Due to stringent emission restrictions, modern gas turbines mostly rely on lean premixed combustion. Since this combustion mode is susceptible to thermoacoustic instabilities, there is a need for modeling tools with predictive capabilities. Linear network models are able to predict the occurrence of thermoacoustic instabilities but yield no information on the oscillation amplitude. The prediction of the pulsation levels and hence an estimation whether a certain operating condition has to be avoided is only possible if information on the nonlinear flame response is available. Typically, the flame response shows saturation at high forcing amplitudes. A newly constructed atmospheric test rig, specifically designed for the realization of high excitation amplitudes over a broad frequency range, is used to generate extremely high acoustic forcing power with velocity fluctuations of up to 100% of the mean flow. The test rig consists of a generic combustor with a premixed swirl-stabilized natural gas flame, where the upstream part has a variable length to generate adaptive resonances of the acoustic field. The OH chemiluminescence response, with respect to velocity fluctuations at the burner, is measured for various excitation frequencies and amplitudes. From these measurements, an amplitude dependent flame transfer function is obtained. Phase-averaged OH pictures are used to identify changes in the flame shape related to saturation mechanisms. For different frequency regimes, different saturation mechanisms are identified.

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds., 2005,
Combustion Instabilities in Gas Turbine Engines
(
Progress in Astronautics and Aeronautics
, Vol.
210
),
AIAA
,
Reston, VA
.
2.
Dowling
,
A. P.
, and
Stow
,
S. R.
, 2003, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
751
764
.
3.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Bellucci
,
V.
, and
Flohr
,
P.
, 2005, “
Implementation of Instability Prediction in Design: Alstom Approaches
,”
Combustion Instabilities in Gas Turbine Engines
(
Progress in Astronautics and Aeronautics
, Vol.
210
),
T.
Lieuwen
and
V.
Yang
, eds.,
AIAA
,
Reston, VA
, pp.
445
480
.
4.
Dowling
,
A. P.
, 1997, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
0022-1120,
346
, pp.
271
290
.
5.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2008, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
0022-1120,
615
, pp.
139
167
.
6.
Lieuwen
,
T. C.
, 2002, “
Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor
,”
J. Propul. Power
0748-4658,
18
(
1
), pp.
61
67
.
7.
Moeck
,
J. P.
,
Bothien
,
M. R.
,
Schimek
,
S.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
, 2008, “
Subcritical Thermoacoustic Instabilities in a Premixed Combustor
,” AIAA Paper No. 2008-2946.
8.
Bellows
,
B. B.
,
Bobba
,
M. K.
,
Forte
,
A.
,
Seitzmann
,
J. M.
, and
Lieuwen
,
T.
, 2007, “
Flame Transfer Function Saturation Mechanisms in a Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3181
3188
.
9.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C. F.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
, 2005, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
0010-2180,
143
(
1–2
), pp.
37
55
.
10.
Schimek
,
S.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
, 2009, “
Design of a Combustion Test Rig With High Amplitude Forcing Capabilities for Nonlinear Flame Transfer Function Measurements
,”
Proceedings of the 16th International Congress on Sound and Vibration
.
11.
Leuckel
,
W.
, 1967, “
Swirl Intensities, Swirl Types and Energy Losses of Different Swirl Generating Devices
,” Technical Report Document No. G02/a/16.
12.
Schneider
,
C.
, 2004, “
Über die Charakterisierung von Turbulenzstrukturen in verdrallten Strömungen
,” Ph.D. thesis, TU Darmstadt, Hessen, Deutschland.
13.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
, 2002, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
2
), pp.
239
247
.
14.
Güthe
,
F.
, and
Schuermans
,
B.
, 2007, “
Phase-Locking in Post-Processing for Pulsating Flames
,”
Meas. Sci. Technol.
0957-0233,
18
(
9
), pp.
3036
3042
.
15.
Yuan
,
Z. -G.
, 1995, “
The Filtered Abel Transform and Its Application in Combustion Diagnostics
,”
NASA
Report No. NASA/CR2003-212121.
16.
Thumuluru
,
S. K.
, and
Lieuwen
,
T.
, 2009, “
Characterisation of Acoustically Forced Swirl Flame Dynamics
,”
Proceedings of the Combustion Institute
, Vol.
32
, pp.
2893
2900
.
17.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
, 2004, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.
18.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
,
Morenton
,
P.
, and
Candel
,
S.
, 2009, “
Dynamics of Premixed Confined Swirling Flames
,”
C. R. Mec.
1631-0721,
337
, pp.
395
405
.
19.
Lohrmann
,
L.
,
Büchner
,
H.
,
Zarzalis
,
N.
, and
Krebs
,
W.
, 2003, “
Flame Transfer Function Characteristics of Swirl Flames for Gas Turbine Applications
,”
ASME
Paper No. GT2003-38113.
You do not currently have access to this content.