Monitoring rotor deformations and vibrations dynamically is an important task for improving both the safety and the lifetime as well as the energy efficiency of motors and turbo machines. However, due to the high rotor speed encountered in particular at turbo machines, this requires concurrently high measurement rate and high accuracy, which is hardly possible to achieve with currently available measurement techniques. To solve this problem, in this paper, we present a novel nonincremental interferometric optical sensor that measures simultaneously the in-plane velocity and the out-of-plane position of laterally moving objects with micrometer precision and concurrently with microsecond temporal resolution. It will be shown that this sensor exhibits the outstanding feature that its measurement uncertainty is generally independent of the object velocity, which enables precise deformation and vibration measurements also at high rotor speed. Moreover, this sensor does not require an in situ calibration and it allows a direct measurement of blade velocity variations in contrast to blade tip timing systems. For application under harsh environmental conditions such as high temperatures, a robust and miniaturized fiber-optic sensor setup was developed. To demonstrate the capability of this sensor, measurements of tip clearance changes and rotor blade vibrations at varying operating conditions of a transonic centrifugal compressor test rig at blade tip velocities up to 600 m/s are presented among others.

References

1.
Schweizer
,
B.
, and
Sievert
,
M.
, 2009, “
Nonlinear Oscillations of Automotive Turbocharger Turbines
,”
J. Sound Vib.
,
321
, pp.
955
975
.
2.
Klauke
,
T.
,
Kuhhorn
,
A.
,
Beirow
,
B.
, and
Parchem
,
R.
, 2008, “
Blade Vibration Phenomena of HPC Bliscs Considering Manufacturing Effects and Strain Gauge Application
,”
Proceedings of 53rd ASME Turbo Expo 2008
,
ASME
,
New York
, Vol.
5
, Part A, pp.
403
413
.
3.
Fabian
,
T.
Prinz
,
F. B.
, and
Brasseur
,
G.
, 2005, “
Capacitive Sensor for Active Tip Clearance Control in a Palm-Sized Gas Turbine Generator
,”
IEEE Trans. Instrum. Meas.
,
54
(
3
), pp.
1133
1143
.
4.
Lattime
,
S. B.
, and
Steinetz
,
B.M.
, 2004, “
High-Pressure-Turbine Clearance Control Systems: Current Practices and Future Directions
,”
J Propul. Power
,
20
(
2
), pp.
302
311
.
5.
Lawson
,
C. P.
, and
Ivey
,
P.C.
, 2005, “
Turbomachinery Blade Vibration Amplitude Measurement through Tip Timing with Capacitance Tip Clearance Probes
,”
Sens. Actuators, A
,
118
(
1
), pp.
14
24
.
6.
Sheard
,
A. G.
O’Donnell
,
S. G.
, and
Stringfellow
,
J. F.
, 1999, “
High Temperature Proximity Measurement in Aero and Industrial Turbomachinery
,”
J. Eng. Gas Turbines Power
,
121
(
1
), pp.
167
173
.
7.
Chakravarty
,
U. K.
, 2010, “
SectionBuilder: An Innovative Finite Element Tool for Analysis and Design of Composite Rotor Blade Cross-Sections
,”
Compos. Struct.
,
92
(
2
), pp.
284
294
.
8.
Kempe
,
A.
Schlamp
,
S.
, and
Rösgen
,
T.
, 2003, “
Low-Coherence Interferometric Tip-Clearance Probe
,”
Opt. Lett.
,
28
(
15
), pp.
1323
1325
.
9.
Matsuda
,
Y.
, and
Tagashira
,
T.
, 2001, “
Optical Blade-Tip Clearance Sensor for Non-Metal Gas Turbine Blade
,”
J. Gas Turbine Soc. Jpn. (GTSJ)
,
29
, pp.
479
484
.
10.
Dorsch
,
R. G.
,
Häusler
,
G.
, and
Herrmann
,
J. M.
, 1994, “
Laser Triangulation: Fundamental Uncertainty in Distance Measurement
,”
Appl. Opt.
,
33
(
7
), pp.
1306
1314
.
11.
Dhadwal
,
H. S.
, and
Kurkov
,
A. P.
, 1999, “
Dual-Laser Probe Measurement of Blade-Tip Clearance
,”
J. Turbomach.
,
121
(
3
), pp.
481
485
.
12.
Knappett
,
D.
, and
Garcia
,
J.
, 2008, “
Blade Tip Timing and Strain Gauge Correlation on Compressor Blades
,”
Proc. IMechE Part G: J. Aerosp. Eng.
,
222
, pp.
497
506
.
13.
Oberholster
,
A. J.
, and
Heyns
,
P.S.
, 2009, “
Online Condition Monitoring of Axial-Flow Turbomachinery Blades Using Rotor-Axial Eulerian Laser Doppler Vibrometry
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1634
1643
.
14.
Pfister
,
T.
,
Büttner
,
L.
, and
Czarske
,
J.
, 2005, “
Laser Doppler Profile Sensor with Sub-Micrometre Position Resolution for Velocity and Absolute Radius Measurements of Rotating Objects
,”
Meas. Sci. Technol.
,
16
(
3
), pp.
627
641
.
15.
Pfister
,
T.
, 2008, “
Untersuchung neuartiger Laser-Doppler-Verfahren zur Positions- und Formvermessung bewegter Festkörperoberflächen
,” Ph.D. thesis, Technische Universität Dresden, Shaker, Aachen.
16.
Büttner
,
L.
,
Pfister
,
T.
, and
Czarske
,
J.
, 2006, “
Fiber-Optic Laser Doppler Turbine Tip Clearance Probe
,”
Opt. Lett.
,
31
(
9
), pp.
1217
1219
.
17.
Pfister
,
T.
,
Büttner
,
L.
,
Czarske
,
J.
,
Krain
,
H.
, and
Schodl
,
R.
, 2006, “
Turbo Machine Tip Clearance and Vibration Measurements Using a Fibre Optic Laser Doppler Position Sensor
,”
Meas. Sci. Technol.
,
17
(
7
), pp.
1693
1705
.
18.
Albrecht
,
H.-E.
,
Borys
,
M.
,
Damaschke
,
N.
, and
Tropea
,
C.
, 2003,
Laser Doppler and Phase Doppler Measurement Techniques
,
Springer
,
Berlin
.
19.
Büttner
,
L.
,
Czarske
,
J.
, and
Knuppertz
,
H.
, 2005, “
Laser Doppler Velocity Profile Sensor with Sub-Micrometer Spatial Resolution that Employs Fiber-Optics and a Diffractive Lens
,”
Appl. Opt.
,
44
(
12
), pp.
2274
2280
.
20.
Günther
,
P.
,
Dreier
,
F.
,
Pfister
,
T.
,
Czarske
,
J.
,
Haupt
,
T.
, and
Hufenbach
,
W.
, 2011, “
Measurement of Radial Expansion and Tumbling Motion of a High-Speed Rotor using an Optical Sensor System
,”
Mech. Syst. Signal Process.
,
25
(
1
), pp.
319
330
.
You do not currently have access to this content.