Swirl-stabilized combustion and porous inert medium (PIM) combustion are two methods that have been used extensively, although independently, for flame stabilization. In this study, the two concepts are combined so that the porous insert serves as a passive device to mitigate combustion noise and instabilities. A properly shaped PIM is placed within the combustor to directly influence the turbulent flow field and vortical and/or shear layer structures associated with the outer recirculation zone and inner recirculation zone. After presenting the concept, the paper provides a conceptual understanding of the changes in the mean flow field caused by the PIM. Combustion experiments were conducted at atmospheric pressure using HfC/SiC coated open-cell foam structures of different pore sizes and shapes. Measurements of sound pressure level (SPL) and CO and NOx emissions were taken for different equivalence ratios and reactant flow rates. Combustion mode and PIM geometry to decrease the SPL are identified. The results show that the porous insert can reduce combustion noise without adversely affecting NOx and CO emissions. Experiments show that the proposed concept can also mitigate combustion instabilities encountered at high reactant flow rate.

References

1.
Putnam
,
A. A.
, 1971,
Combustion Driven Oscillations in Industry
,
Elsevier
,
New York.
2.
Strahle
,
W. C.
, 1978, “
Combustion Noise
,”
Prog. Energy Combust. Sci.
,
4
(
3
), pp.
157
176
.
3.
Schefer
,
R. W.
,
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
, 2002, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.
4.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds., 2005,
Combustion Instabilities in Gas Turbine Engines
(Progress in AIAA, Vol. 210),
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
5.
Wicksall
,
D. M.
,
Agrawal
,
A. K.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
, 2005, “
Influence of Hydrogen Addition on Flow Structure in Enclosed Swirling Methane Flame
,”
J. Propul. Power
,
21
, pp.
16
24
.
6.
Wicksall
,
D. W.
,
Agrawal
,
A. K.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
, 2005, “
The Interaction of Flame and Flow Field in a Lean Premixed Swirl-Stabilized Combustor Operated on H2/CH4/Air
,”
Proc. Combust. Inst.
,
30
, pp.
2875
2883
.
7.
Schadow
,
K. C.
, and
Gutmark
,
E.
, 1992, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
,
18
, pp.
117
132
.
8.
Huang
,
Y.
, and
Yang
,
V.
, 2009, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
9.
Rayleigh
,
J. S. W.
, 1945,
The Theory of Sound
, Vol.
2
,
Dover
,
New York
.
10.
Schadow
,
K. C.
,
Gutmark
,
E.
,
Wilson
,
K. J.
, and
Smith
,
R. A.
, 1988, “
Multistep Dump Combustor Design to Reduce Combustion Instabilities
,” AIAA/ASME/SAE/ASEE 24th Joint Propulsion Conference, Paper 88-2854.
11.
Schwarz
,
A.
, and
Janicka
,
J.
, eds., 2009,
Combustion Noise
,
Springer
,
New York
.
12.
Rajaram
,
R.
,
Gray
,
J.
, and
Lieuwen
,
T.
, 2006, “
Premixed Combustion Noise Scaling: Total Power and Spectra
,” AIAA Paper No. 2006-2612.
13.
Flemming
,
F.
,
Olbrit
,
C.
,
Wegner
,
B.
,
Sadiki
,
A.
,
Janicka
,
J.
,
Bake
,
F.
,
Michael
,
U.
,
Lehmann
,
B.
, and
Rohle
,
I.
, 2005, “
Analysis of Unsteady Motion With Respect to Noise Sources in a Gas Turbine Combustor: Isothermal Flow Case
,”
Flow, Turbul. Combust.
,
75
, pp.
3
27
.
14.
Choi
,
G.
,
Tanahashi
,
M.
, and
Miyauchi
,
T.
, 2005, “
Control of Oscillating Combustion and Noise Based on Local Flame Structure
,”
Proc. Combust. Inst.
,
30
, pp.
1807
1814
.
15.
Hirsch
,
C.
,
Wasle
,
J.
,
Winkler
,
A.
, and
Sattelmayer
,
T.
, 2007, “
A Spectral Model for the Sound Pressure From Turbulent Premixed Combustion
,”
Proc. Combust. Inst.
,
31
, pp.
1435
1441
.
16.
Tiribuzi
,
S.
, 2008, “
CFD Simulation of Noise in Gas Turbine Combustors by Means of Turbulence Refluctuation Method
,”
ASME Paper No. GT2008-50241
,
3
, pp.
113
124
.
17.
Duchaine
,
P.
,
Zimmer
,
L.
, and
Schuller
,
T.
, 2009, “
Experimental Investigation of Mechanisms of Sound Production by Partially Premixed Flames
,”
Proc. Combust. Inst.
,
32
, pp.
1027
1034
.
18.
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 2003, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.
19.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2009, “
Dynamic Phase Converter for Passive Control of Combustion Instabilities
,”
Proc. Combust. Inst.
,
32
, pp.
3163
3170
.
20.
Richards
,
G. A.
, and
Straub
,
D. L.
, 2003, “
Passive Control of Combustion Dynamics in Stationary Gas Turbines
,”
J. Propul. Power
,
19
(
5
), pp.
795
810
.
21.
Sreenivasan
,
K. R.
, and
Raghu
,
S.
, 2000, “
The Control of Combustion Instability: A Perspective
,”
Curr. Sci.
,
79
, pp.
867
883
.
22.
Steele
,
R. C.
,
Cowell
,
L. H.
,
Cannon
,
S. M.
, and
Smith
C.E.
, 2000, “
Passive Control of Combustion Instability in Lean Premixed Combustors
,”
J. Eng. Gas Turb. Power
,
122
, pp.
412
419
.
23.
Huang
,
Y.
, and
Yang
,
V.
, 2009, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
, pp.
293
364
.
24.
Agrawal
,
A. K.
, and
Vijaykant
,
S.
, 2010, “
Passive Noise Attenuation System
,” U.S. Patent Application Publication No. US2010/0059311A1, March.
25.
Marbach
,
T.
, and
Agrawal
,
A. K.
, 2005, “
Experimental Study of Surface and Interior Combustion using Composite Porous Inert Media
,”
J. Eng. Gas Turb. Power
,
127
, pp.
307
313
.
26.
Howell
,
H. R.
,
Hall
,
M. J.
, and
Ellzey
,
J. L.
, 1996, “
Combustion of Hydrocarbon Fuels Within Porous Inert Media
,”
Prog. Energy Combust. Sci.
,
22
, pp.
121
145
.
27.
Trimis
,
D.
, and
Durst
,
F.
, 1996, “
Combustion in a Porous Medium—Advances and Applications
,”
Combust. Sci. Technol.
,
121
, pp.
153
168
.
28.
Marbach
,
T. L.
,
Sadasivuni
,
V.
, and
Agrawal
,
A. K.
, 2007, “
Investigation of a Miniature Combustor Using Porous Media Surface Stabilized Flame
,”
Combust. Sci. Technol.
,
179
(
9
), pp.
1901
1922
.
29.
Waitz
,
I. A.
,
Gauba
,
G.
, and
Tzeng
,
Y. S.
, 1998, “
Combustors for Micro-Gas Turbine Engines
,”
J. Fluids Eng.
,
120
, pp.
109
117
.
30.
Fernandez-Pello
,
A. C.
, 2002, “
Micropower Generation Using Combustion: Issues and Approaches
,”
Proc. Combust. Inst.
,
29
, pp.
883
899
.
31.
Zimont
,
V.
, 2000, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Model Combustion Model
,”
Exp. Therm. Fluid Sci.
,
21
, pp.
179
186
.
32.
Zimont
,
V. L.
, and
Lipatnikov
,
A. N.
, 1995, “
A Numerical Model of Premixed Turbulent Combustion of Gases
,”
Chem. Phys. Rep.
,
14
(
7
), pp.
993
1025
.
33.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
, 1998, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
J. Gas Turb. Power
,
120
, pp.
526
532
.
34.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
N.
, 1984,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
35.
Sequera
,
D.
, and
Agrawal
,
A. K.
, 2009, “
Numerical Simulations of Swirl-Stabilized Combustion Coupled With Porous Inert Medium
,” Proceedings of the Sixth U.S. National Combustion Meeting, Paper 11C3.
You do not currently have access to this content.