At present, directional solidification (DS) made blades are commonly used in high performance turbine for their better high temperature mechanical, especially in creep properties compared with the equiaxed grain (EG) blades made by conventional casting method. To predict DS blades' fatigue life accurately, one of the practical ways is to conduct tests on full-scale blades in a laboratory/bench environment. In this investigation, two types of full scale turbine blades, which are made from DZ22B by DS method and K403 by conventional casting method, respectively, were selected to conduct high temperature combined low and high cycle fatigue (CCF) tests on a special design test rig, to evaluate the increase of fatigue life benefitted from material change. Experimental results show that different from EG blades, DS blades' fracture section is not located on the position where the maximum stress point lies. By comparing fatigue test results of the two types of blade, it can be found that the fatigue properties among different regions of the DS blade are different, and its fatigue damage is not only related to the stress field, but also affected by different parts material's fatigue properties.

References

1.
Joseph
,
R. D.
,
1990
, “Properties and Selection,”
Metals Handbook
, Vol. 1, 10th ed., ASTM International, Metals Park, OH, pp.
981
1006
.
2.
McKellen
,
M.
,
Chen
,
S. Q.
, and
Chen
,
R. Z.
,
1989
,
Directional Solidification of High Temperature Material
,
Aviation Industry
, Beijing.
3.
Chen
,
R. Z.
,
2002
, “
Review and Prospect of Developments of Cast Superalloys and Technology of Aeroengine Turbine Blade
,”
Aeronaut. Manuf. Technol.
,
26
(2), pp.
19
23
.10.3969/j.issn.1671-833X.2002.02.009
4.
He
,
Y. H.
, and
Su
,
B.
,
2005
, “
Mechancial Property Status of Chinese Aeroengine Turbine Blade Materials
,”
Aeroengine
,
31
(2), pp.
51
54
.10.3969/j.issn.1672-3147.2005.02.016
5.
Schweizer
,
C.
,
Seifert
,
T.
,
Nieweg
,
B.
,
Von Hartrott
,
P.
, and
Riedel
,
H.
,
2011
, “
Mechanisms and Modelling of Fatigue Crack Growth Under Combined Low and High Cycle Fatigue Loading
,”
Int. J. Fatigue
,
33
(2), pp.
194
202
.10.1016/j.ijfatigue.2010.08.008
6.
Hou
,
N.
,
Wen
,
Z.
,
Yu
,
Q.
, and
Yue
,
Z.
,
2009
, “
Application of a Combined High and Low Cycle Fatigue Life Model on Life Prediction of SC Blade
,”
Int. J. Fatigue
,
31
(4), pp.
616
619
.10.1016/j.ijfatigue.2008.03.021
7.
Filippini
,
M.
,
Foletti
,
S.
, and
Pasquero
,
G.
,
2010
, “
Combined Cycle Fatigue of Gas Turbine Blade Materials at Elevated Temperature
,”
Strain
,
46
(4), pp.
374
381
.10.1111/j.1475-1305.2009.00666.x
8.
Yan
,
X. J.
, and
Nie
,
J. X.
,
2008
, “
Creep-Fatigue Tests on Full Scale Directionally Solidified Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
044501
.10.1115/1.2901174
9.
Weser
,
S.
,
Gampe
,
U.
,
Raddatz
,
M.
,
Parchem
,
R.
, and
Lukas
,
P.
,
2011
, “
Advanced Experimental and Analytical Investigations on Combined Cycle Fatigue (CCF) of Conventional Cast and Single-Crystal Gas Turbine Blades
,”
ASME
Paper No. GT2011-45171. 10.1115/GT2011-45171
10.
Issler
,
S.
, and
Roos
,
E.
,
2003
, “
Numerical and Experimental Investigations Into Life Assessment of Blade–Disc Connections of Gas Turbines
,”
Nucl. Eng. Des.
,
226
(2), pp.
155
164
.10.1016/S0029-5493(03)00192-4
11.
Oakley
,
S.
, and
Nowell
,
D.
,
2007
, “
Prediction of the Combined High- and Low-Cycle Fatigue Performance of Gas Turbine Blades After Foreign Object Damage
,”
Int. J. Fatigue
,
29
(1), pp.
69
80
.10.1016/j.ijfatigue.2006.02.042
12.
SwRI Gas Turbine Technology Center,
2013
, “
Diagnostic Methods to Detect and Avoid High-Cycle Fatigue Damage
,” Southwest Research Institute, San Antonio, TX, accessed June 24, 2013, http://www.swri.org/4org/d18/mechflu/planteng/gasturb/audit.htm
13.
Witek
,
L.
,
2009
, “
Experimental Crack Propagation and Failure Analysis of the First Stage Compressor Blade Subjected to Vibration
,”
Eng. Failure Anal.
,
16
(7), pp.
2163
2170
.10.1016/j.engfailanal.2009.02.014
14.
Xie
,
M.
,
Soni
,
S. R.
,
Cross
,
C. J.
, and
Terborg
,
G. E.
,
2004
, “
Multiaxial High Cycle Fatigue Test System
,” U.S. Patent No. US20020162400.
15.
Hu
,
D. Y.
, and
Wang
,
R. Q.
,
2013
,“
Combined Fatigue Experiments on Full Scale Turbine Components
,”
Aircr. Eng. Aerosp. Technol.
,
85
(1), pp.
4
9
.10.1108/00022661311294085
16.
Cross
,
C. J.
,
2000
, “
Multi-Axial Testing of Gas Turbine Engine Blades
,”
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, Huntsville, AL, July 17–19,
AIAA
Paper No. 2000-3641. 10.2514/6.2000-3641
17.
Lu
,
R.
, and
Liao
,
Z.
,
1997
, “
Briefing on Vibration Fatigue of Engine Turbine Blade
,” Hongdu Science and Technology,
1997
(1), pp.
19
23
.
18.
Sun
,
R. J.
,
2011
, “
Structure Design of Directional Solidified Turbine Blade Considering Grain Structure Variation Among Different Locations
,” Ph.D. thesis, Beijing University of Aeronautics and Astronautics, Beijing.
19.
Kang
,
N.
,
Yan
,
X.-J.
,
Li
,
X.-F.
, and
Liu
,
Z.-N.
,
2010
, “
Numerical Calculation and Measurement of the Vibration Stress in Combined High and Low Cycle Fatigue Tests
,”
Gas Turbine Exp. Res.
,
23
(
4
), pp.
22
25
.10.3969/j.issn.1672-2620.2010.04.005
20.
Sun
,
R. J.
,
Yan
,
X. J.
, and
Nie
,
J. X.
,
2012
, “
Inverse Method for Estimating the Vibration Stress of Turbine Blades Based on Combined High- and Low-Cycle Fatigue Tests
,”
J. Aerosp. Power
,
27
(
2
), pp.
289
294
, http://219.239.227.33/jasp_cn/ch/reader/view_abstract.aspx?file_no=20120207&flag=1
21.
Sun
,
R. J.
,
Yan
,
X. J.
, and
Nie
,
J. X.
,
2011
, “
Failure Characteristics of Directional Solidification Turbine Blade Under High Tempereture Low Cycle Fatigue Load
,”
Acta Aeronaut. Astronaut. Sin.
,
32
(2), pp.
337
343
.CNKI:11-1929/V.20101115.1834.001
You do not currently have access to this content.