Contemporary tools for experimentation and computational modeling of unsteady and reacting flow open new opportunities for engineering insight into dynamic phenomena. In this article, we describe a novel use of proper orthogonal decomposition (POD) for validation of the unsteady heat release of a turbulent premixed flame stabilized by a vee-gutter bluff-body. Large-eddy simulations were conducted for the same geometry and flow conditions as examined in an experimental rig with chemiluminescence measurements obtained with a high-speed camera. In addition to comparing the experiment to the simulation using traditional time-averaging and pointwise statistical techniques, the dynamic modes of each are isolated using proper orthogonal decomposition (POD) and then compared mode-by-mode against each other. The results show good overall agreement between the shapes and magnitudes of the first modes of the measured and simulated data. A numerical study of into the effects of various simulation parameters on these heat release modes showed significant effects on the flame's effective angle but also on the size, shape, and symmetry patterns of the flame's dynamic modes.

References

1.
Macquisten
,
M. A.
,
Dowling
,
A. P.
, and
Street
,
T.
,
1993
, “
Low Frequency Combustion Oscillations in a Model Afterburner
,”
Combust. Flame
,
94
, pp.
253
264
.10.1016/0010-2180(93)90072-B
2.
Giacomazzi
,
E.
,
Battaglia
,
V.
, and
Bruno
,
C.
,
2004
, “
The Coupling of Turbulence and Chemistry in a Premixed Bluff-Body Flame as Studied by LES
,”
Combust, Flame
,
138
(
4
), pp.
320
335
.10.1016/j.combustflame.2004.06.004
3.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.10.1016/j.pecs.2008.07.003
4.
Giezendanner
,
R.
,
Keck
,
O.
,
Weigand
,
P.
,
Meier
,
W.
,
Meier
,
U.
,
Stricker
,
W.
, and
Aigner
,
M.
,
2003
, “
Periodic Combustion Instabilities in a Swirl Burner Studied by Phase-Locked Planar Laser-Induced Fluorescence
,”
Combust. Sci. Tech.
,
175
(
4
), pp.
721
741
.10.1080/00102200302390
5.
Roshko
,
A.
,
1952
, “
On the Development of Turbulent Wakes From Vortex Streets
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
6.
Yang
,
J.-T.
, and
Tsai
,
G.-L.
,
1992
, “
The Wake Flow Structure of an Open-Slit Vee Gutter
,”
Experiment. Therm. Fluid Sci.
,
5
(6), pp.
685
696
.10.1016/0894-1777(92)90112-I
7.
Karniadakis
,
E. M.
, and
Triantafyllou
,
G.
,
1992
Three-Dimensional Dynamics and Transition to Turbulence in the Wake of Bluff Objects
,”
J. Fluid Mech.
,
238
, pp.
1
30
.10.1017/S0022112092001617
8.
Spalart
,
P. R.
, and
Squires
,
K. D.
,
1999
, “
The Status of Detached-Eddy Simulation for Bluff Bodies
.”
The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
, Vol. 19, R. McCallen, F. Browand, and J. Ross, eds., Springer, Berlin, pp. 29–45.10.1007/978-3-540-44419-0_3
9.
Shur
,
M.
,
2005
, “
Three Dimensionality in Reynolds-Averaged Navier–Stokes Solutions Around Two-Dimensional Geometries
,”
AIAA J.
,
43
(
6
), pp. 1230–1242.10.2514/1.9694
10.
Achenbach
,
E.
, and
Heinecke
,
E.
,
1981
, “
On Vortex Shedding From Smooth and Rough Cylinders in the Range of Reynolds Numbers 6×103 to 5×106
,”
J. Fluid Mech.
,
109
, pp.
239
251
.10.1017/S002211208100102X
11.
West
,
G. S.
, and
Apelt
,
C. J.
,
1982
, “
The Effects of Tunnel Blockage and Aspect Ratio on the Mean Flow Past a Circular Cylinder With Reynolds Numbers Between 104 and 105
,”
J. Fluid Mech.
,
114
, pp.
361
377
.10.1017/S0022112082000202
12.
Achenbach
,
E.
,
1977
, “
The Effect of Surface Roughness on the Heat Transfer From a Circular Cylinder to the Cross Flow of Air
,”
Int. J. Heat Mass Transf.
,
20
(4), pp.
359
369
.10.1016/0017-9310(77)90157-0
13.
Huang
,
R. F.
, and
Chang
,
K. T.
,
2004
, “
Oscillation Frequency in Wake of a Vee Gutter
,”
J. Propul. Power
,
20
(
5
), pp.
871
878
.10.2514/1.9431
14.
Mattingly
,
J.
,
2004
,
Elements of Gas Turbine Propulsion
, McGraw-Hill, New York, p.
959
.
15.
Cocks
,
P. A. T.
,
Sankaran
,
V.
, and
Soteriou
,
M. C.
,
2013
, “
Is LES of Reacting Flows Predictive? Part 1: Impact of Numerics
,” 51st AIAA Aerospace Sciences Meeting, Grapevine TX, January 7–10, pp.
1
29
.
16.
Sjunneson
,
A.
,
Henrikson
,
P.
, and
Lofstrom
,
C.
,
1992
, “
CARS Measurements and Visualization of Reacting Flows in a Bluff Body Stabilized Flame
,”
28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit,
Nashville, TN, July 6–8,
AIAA
Paper No. 92-3650.10.2514/6.1992-3650
17.
Giacomazzi
,
E.
, and
Bruno
,
C.
,
2000
, “
Effects of Pressure on Unsteady Flame Stabilization
,”
36th AIAA/ASME/SAE/ASEE, Joint Propulsion Conference
, Huntsville, AL, July 17–19,
AIAA
Paper No. 2000-3127.10.2514/6.2000-3127
18.
Fureby
,
C.
, and
Lofstrom
,
C.
1994
, “
Large-Eddy Simulations of Bluff Body Stabilized Flames
,”
Symp. (Int.) Combust.
,
25
(1), pp. 1257–1264.10.1016/S0082-0784(06)80766-6
19.
Schadow
,
K. C.
, and
Gutmark
,
E.
,
1992
, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
,
18
(
2
), pp.
117
132
.10.1016/0360-1285(92)90020-2
20.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
, pp.
221
246
.10.1146/annurev.fl.10.010178.001253
21.
Erickson
,
R. R.
,
Soteriou
,
M. C.
, and
Mehta
,
P. G.
,
2006
, “
The Influence of Temperature Ratio on the Dynamics of Bluff Body Stabilized Flames
,” 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 9–12,
AIAA
Paper No. 2006-753.10.2514/6.2006-753
22.
Stein
,
O.
, and
Kempf
,
A.
,
2007
, “
LES of the Sydney Swirl Flame Series: A Study of Vortex Breakdown in Isothermal and Reacting Flows
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
1755
1763
.10.1016/j.proci.2006.07.255
23.
Ranalli
,
J. A.
, and
Brien
,
W. F. O.
,
2009
, “
Spatially Resolved Analysis of Flame Dynamics for the Prediction of Thermoacoustic Combustion Instabilities
,” Ph.D thesis, Virginia Polytechnic Institute and State University Blacksburg, VA.
24.
Haber
,
L. C.
,
2000
, “
An Investigation Into the Origin, Measurement and Application of Chemiluminescent Light Emissions from Premixed Flames
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
25.
Farina
,
J. T.
,
2013
, “
Application of Multi-Port Mixing for Passive Suppression of Thermo-Acoustic Instabilities in Premixed Combustors
,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
26.
Wickersham
,
A. J.
,
Li
,
X.
, and
Ma
,
L.
,
2014
, “
Comparison of Fourier, Principal Component and Wavelet Analyses for High Speed Flame Measurements
,”
Comput. Phys. Commun.
,
185
(
4
), pp.
1237
1245
.10.1016/j.cpc.2013.12.022
27.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
28.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A Fluid Dyn.
,
3
(
7
), pp. 1760–1765.10.1063/1.857955
29.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A Fluid Dyn.
,
4
(
3
), pp. 633–635.10.1063/1.858280
30.
Butler
,
T. D.
, and
O'Rourke
,
P. J.
,
1977
, “
A Numerical Method for Two Dimensional Unsteady Reacting Flows
,”
Int. Symposium Combust.
,
16
(
1
), pp.
1503
1515
.10.1016/S0082-0784(77)80432-3
31.
Selle
,
L.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
10.1016/j.combustflame.2004.03.008.
32.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, R.T. Edwards, Inc., Philadelphia, PA.
33.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
34.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(3), pp. 526–532.10.1115/1.2818178
35.
Zimont
,
V.
,
Biagioli
,
F.
, and
Syed
,
K. J.
,
2001
, “
Modelling Turbulent Premixed Combustion in the Intermediate Steady Propagation Regime
,”
Prog. Computat. Fluid Dyn.
,
1
(
1
), pp.
14
28
.10.1504/PCFD.2001.001467
36.
Lamoureux
,
N.
,
Djebaïli-Chaumeix
,
N.
, and
Paillard
,
C.-E.
,
2003
, “
Laminar Flame Velocity Determination for H
2
–Air–He–CO
2
Mixtures Using the Spherical Bomb Method
,”
Experiment. Therm. Fluid Sci.
,
27
(
4
), pp.
385
393
.10.1016/S0894-1777(02)00243-1
37.
Pearson
,
K.
,
1901
, “
On Lines and Planes of Closest Fit to Systems of Points in Space
,”
Philosophical Mag.
,
2
(11), pp.
559
572
.10.1080/14786440109462720
38.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,” Atmospheric Turbulence and Radio Wave Propagation, A. M. Yaglom, and V. I. Tatarski, eds., Nauka, Moscow, pp.
166
178
.
39.
Gergen
,
I.
, and
Harmanescu
,
M.
,
2012
, “
Application of Principal Component Analysis in the Pollution Assessment With Heavy Metals of Vegetable Food Chain in the Old Mining Areas
,”
Chem. Central J.
,
6
(
1
), p.
156
.10.1186/1752-153X-6-156
40.
Smith
,
T. R.
,
Moehlis
,
J.
, and
Holmes
,
P.
,
2005
, “
Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
275
307
.10.1007/s11071-005-2823-y
41.
Sirovich
,
L.
, and
Kirby
,
M.
,
1987
, “
Low-Dimensional Procedure for the Characterization of Human Faces
,”
J. Opt. Soc. Am. A
,
4
(
3
), pp. 519–524.10.1364/JOSAA.4.000519
42.
Hsieh
,
T.-H.
,
Chen
,
J.-J. J.
,
Chen
,
L.-H.
,
Chiang
,
P.-T.
, and
Lee
,
H.-Y.
,
2011
, “
Time-Course Gait Analysis of Hemiparkinsonian Rats Following 6-Hydroxydopamine Lesion
,”
Behav. Brain Res.
,
222
(
1
), pp.
1
9
.10.1016/j.bbr.2011.03.031
43.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
, 25, pp. 539–575.10.1146/annurev.fl.25.010193.002543
44.
Fukunaga
,
K.
,
1990
,
Introduction to Statistical Pattern Recognition
, 2nd ed., Academic Press, San Diego, CA, pp.
592
.
45.
Moin
,
P.
, and
Moser
,
R. D.
,
2006
, “
Characteristic-Eddy Decomposition of Turbulence in a Channel
,”
J. Fluid Mech
200
, pp. 471–509.10.1017/S0022112089000741
46.
Duwig
,
C.
, and
Iudiciani
,
P.
,
2009
, “
Extended Proper Orthogonal Decomposition for Analysis of Unsteady Flames
,”
Flow, Turbul. Combust.
,
84
(
1
), pp.
25
47
.10.1007/s10494-009-9210-6
47.
Böhm
,
B.
,
Brübach
,
J.
,
Ertem
,
C.
, and
Dreizler
,
A.
,
2008
, “
Experiments for Combustion-LES Validation
,”
Flow, Turbul. Combust.
,
80
(
4
), pp.
507
529
.10.1007/s10494-008-9144-4
48.
Miranda
,
A. A.
,
Le Borgne
,
Y.-A.
, and
Bontempi
,
G.
,
2007
, “
New Routes From Minimal Approximation Error to Principal Components
,”
Neural Process. Lett.
,
27
(
3
), pp. 197–207.10.1007/s11063-007-9069-2
49.
Chatterjee
,
P.
,
Baumann
,
W. T.
,
Godfrey
,
A. G.
,
Saunders
,
W. R.
, and
West
,
R. L.
,
2004
, “
A Computational Fluid Dynamics Investigation of Thermoacoustic Instabilities in Premixed Laminar and Turbulent Combustion Systems
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
50.
Chishty
,
W. A.
,
2005
, “
Effects of Thermoacoustic Oscillations on Spray Combustion Dynamics With Implications for Lean Direct Injection Systems Effects of Thermoacoustic Oscillations on Spray Combustion Dynamics With Implications for Lean Direct Injection Systems
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
51.
Hendricks
,
A. G.
,
2003
, “
Determination of Flame Dynamics for Unsteady Combustion Systems Using Tunable Diode Laser Absorption Spectroscopy
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
52.
Vukadinovic
,
V.
,
Habisreuther
,
P.
, and
Zarzalis
,
N.
,
2010
, “
Experimental Study on the Influence of Pressure and Temperature on the Burning Velocity and Markstein Number of Jet A-1 Kerosene
,”
ASME
Paper No. GT2010-22535.10.1115/GT2010-22535
53.
ANSYS,
2009
, FLUENT Documentation v 12.0, ANSYS Inc., Canonsburg, PA.
54.
Blanchard
,
R.
,
Ng
,
W.
,
Lowe
,
K. T.
, and
Vandsburger
,
U.
,
2014
, “
Simulating Bluff Body Flameholders: On the Use of Proper Orthogonal Decomposition for Wake Dynamics Validation
.”
ASME J. Eng. Gas Turb. Power
,
136
(
12
), p.
122603
.10.1115/1.4027556
You do not currently have access to this content.