The flashback propensity of a premixed jet flame has been studied experimentally. Boundary layer flashback has been investigated under turbulent flow conditions at elevated pressures and temperatures (i.e., 3–8 atm and 300–500 K). The data presented in this study are for hydrogen fuel at various Reynolds numbers, which are representative of practical gas turbine premixer conditions, and are significantly higher than results currently available in the literature. Three burner heads constructed of different materials (stainless steel, copper, and zirconia ceramic) were used to evaluate the effect of tip temperature, a parameter found previously to be an important factor in triggering flashback. This study characterizes flashback systematically by developing a comprehensive nondimensional model which takes into account all effective parameters in boundary layer flashback propensity. The model was optimized for new data and captures the behavior of the new results well. Further, comparison of the model with the single existing study of high-pressure jet flame flashback also indicates good agreement. For a given equivalence ratio, the critical velocity gradient and bulk velocity at flashback vary exponentially with pressure. The pressure exponent of the critical velocity gradient was found to be close to 1.1 at fuel-lean conditions and becomes higher as equivalence ratio is increased. The developed dimensionless correlation is Da=Const·Le1.68·Pef1.91·(Tu/T0)2.57·(Ttip/To)0.49·(Pu/P0)2.1, which can be used to predict the boundary layer flashback propensity for given parameters.

References

1.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.
2.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
,
2001
, “
Issues for Low-Emission, Fuel-Flexible Power System
,”
Prog. Energy Combust. Sci.
,
27
(
2
), pp.
141
169
.
3.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp.
75
97
.
4.
Putnam
,
A. A.
, and
Jensen
,
R. A.
,
1949
, “
Application of Dimensionless Numbers to Flash-Back and Other Combustion Phenomena
,”
Symp. Combust. Flame Explos. Phenom.
,
3
(
1
), pp.
89
98
.
5.
Spalding
,
D. B.
,
1957
, “
A Theory of Inflammability Limits and Flame-Quenching
,”
Proc. R. Soc. London, Ser. A
,
240
(
1220
), pp.
83
100
.
6.
Markstein
,
G. H.
, and
Polanyi
,
M. L.
,
1947
, “
Flame Propagation: Critical Review of Existing Theories
,” Cornell Aeronautical Laboratory, Inc., Buffalo, NY, Report No. 61.
7.
Wohl
,
K.
,
1953
, “
Quenching, Flash-Back, Blow-Off-Theory and Experiment
,”
Symp. (Int.) Combust.
,
4
(
1
), pp.
68
89
.
8.
Wohl
,
K.
,
Kapp
,
N. M.
, and
Gazley
,
C.
,
1948
, “
The Stability of Open Flames
,”
Symp. Combust. Flame, Explos. Phenom.
,
3
(
1
), pp.
3
21
.
9.
Dugger
,
G. L.
,
1955
, “
Flame Stability of Preheated Propane-Air Mixtures
,”
Ind. Eng. Chem.
,
47
(
1
), pp.
109
114
.
10.
Grumer
,
J.
, and
Harris
,
M. E.
,
1954
, “
Temperature Dependence of Stability Limits of Burner Flames
,”
Ind. Eng. Chem.
,
46
(
11
), pp.
2424
2430
.
11.
Grumer
,
J.
,
1949
, “
Predicting Burner Performance With Interchanged Fuel Gases
,”
Ind. Eng. Chem.
,
41
(
12
), pp.
2756
2761
.
12.
Grumer
,
J.
, and
Harris
,
M. E.
,
1952
, “
Flame-Stability Limits of Methane, Hydrogen, and Carbon Monoxide Mixtures
,”
Ind. Eng. Chem.
,
44
(
7
), pp.
1547
1553
.
13.
Grumer
,
J. M.
,
Harris
,
E.
, and
Schultz
,
H.
,
1952
, “
Predicting Interchangeability of Fuel Gases. Interchangeability of Oil Gases or Propane-Air Fuels With Natural Gases
,”
Ind. Eng. Chem.
,
44
(
7
), pp.
1554
1559
.
14.
Grumer
,
J. M.
,
Harris
,
E.
, and
Schultz
,
H.
,
1955
, “
Flame-Stability Limits of Ethylene, Propane, Methane, Hydrogen, and Nitrogen Mixtures
,”
Ind. Eng. Chem.
,
47
(
9
), pp.
1760
1767
.
15.
Van Krevelen
,
D. W.
, and
Chermin
,
H. A. G.
,
1958
, “
Generalized Flame Stability Diagram for the Prediction of Interchangeability of Gases
,”
Symp. (Int.) Combust.
,
7
(
1
), pp.
358
368
.
16.
Caffo
,
E.
, and
Padovani
,
C.
,
1963
, “
Flashback in Premixed Air Flames
,”
Combust. Flame
,
7
(
4
), pp.
331
337
.
17.
Ball
,
D. A.
,
Putnam
,
A. A.
,
Radhakrishnan
,
E.
, and
Levy
,
A.
,
1978
, “
Relation to Burning Velocity, Quenching Distance, and Flash-Back Velocity Gradient for Low- and Intermediate-BTU Gases
,”
Battelle Columbus Laboratories
,
Columbus, OH
, Technical Report No. DOE/ET/10653-3.
18.
Putnam
,
A. A. D.
,
Ball
,
A.
, and
Levy
,
A.
,
1980
, “
Effect of Fuel Composition on Relation of Burning Velocity to Product of Quenching Distance and Flashback Velocity Gradient
,”
Combust. Flame
,
37
, pp.
193
196
.
19.
Davu
,
D.
,
Franko
,
R.
, and
Choudhuri
,
A.
,
2005
, “
Investigation on Flashback Propensity of Syngas Premixed Flames
,”
AIAA
Paper No. 2005-3585.
20.
Berlad
,
A. L.
, and
Potter
,
A. E.
,
1957
, “
Relation of Boundary Velocity Gradient for Flash-Back to Burning Velocity and Quenching Distance
,”
Combust. Flame
,
1
(
1
), pp.
127
128
.
21.
Bollinger
,
L. E.
, and
Edse
,
R.
,
1956
, “
Effect of Burner-Tip Temperature on Flash Back of Turbulent Hydrogen-Oxygen Flames
,”
Ind. Eng. Chem.
,
48
(
4
), pp.
802
807
.
22.
Fine
,
B.
,
1957
, “
Stability Limits and Burning Velocities for Some Laminar and Turbulent Propane and Hydrogen Flames at Reduced Pressure
,” NACA, Washington, DC, Technical Note (4031):49.
23.
Fine
,
B.
,
1958
, “
Flashback of Laminar and Turbulent Burner Flames at Reduced Pressure
,”
Combust. Flame
,
2
(
3
), pp.
253
266
.
24.
Khitrin
,
L. N.
,
Moin
,
P. B.
,
Smirnov
,
D. B.
, and
Shevchuk
,
V. U.
,
1965
, “
Peculiarities of Laminar- and Turbulent-Flame Flashbacks
,”
Symp. (Int.) Combust.
,
10
(
1
), pp.
1285
1291
.
25.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2010
, “
Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control
,”
ASME
Paper No. GT2010-23456.
26.
Shaffer
,
B.
,
Duan
,
Z.
, and
McDonell
,
V.
,
2012
, “
Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner
,”
ASME
Paper No. GT2012-69357.
27.
Lin
,
Y. C.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2013
, “
Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111503
.
28.
Duan
,
Z.
,
Shaffer
,
B.
, and
McDonell
,
V. J.
,
2013
, “
Study of Fuel Composition, Burner Material, and Tip Temperature Effects on Flashback of Enclosed Jet Flame
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121504
.
29.
Duan
,
Z.
,
Shaffer
,
B.
,
McDonell
,
V.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2014
, “
Influence of Burner Material, Tip Temperature, and Geometrical Flame Configuration on Flashback Propensity of H2-Air Jet Flames
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021502
.
30.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011502
.
31.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2012
, “
Premixed Flame Flashback in Wall Boundary Layers Studied by Long-Distance Micro-PIV
,”
Exp. Fluids
,
52
(
2
), pp.
347
360
.
32.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.
33.
Gruber
,
A.
,
Kerstein
,
A. R.
,
Valiev
,
D.
,
Law
,
C. K.
,
Kolla
,
H.
, and
Chen
,
J. H.
,
2015
, “
Modeling of Mean Flame Shape During Premixed Flame Flashback in Turbulent Boundary Layers
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1485
1492
.
34.
Baumgartner
,
G.
,
Boeck
,
L.
, and
Sattelmayer
,
T.
,
2015
, “
Experimental Investigation of the Transition Mechanism From Stable Flame to Flashback in a Generic Premixed Combustion System With High-Speed μ-PIV and μ-PLIF Combined With Chemiluminescence Imaging
,”
ASME
Paper No. GT2015-42605.
35.
Leong
,
M. Y.
,
Smugeresky
,
C. S.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
,
2001
, “
Rapid Liquid Fuel Mixing for Lean Burning Combustors: Low Power Performance
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
574
579
.
36.
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2014
, “
Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031502
.
37.
Yeung
,
P. K.
,
Xu
,
S.
, and
Sreenivasan
,
K. R.
,
2002
, “
Schmidt Number Effects on Turbulent Transport With Uniform Mean Scalar Gradient
,”
Phys. Fluids
,
14
(
12
), pp.
4178
4191
.
38.
Akbari
,
A.
,
Hill
,
S.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2011
, “
Experimental and Computational Analyses of Methane and Hydrogen Mixing in a Model Premixer
,”
ASME J. Eng. Gas Turbines Power
,
131
(
10
), p.
101503
.
39.
Akbari
,
A.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2013
, “
Statistical Evaluation of RANS Simulations Compared to Experiments for a Model Premixer
,”
Eng. Appl. Comput. Fluid
,
7
(
1
), pp.
103
115
.
40.
Duan
,
Z.
,
Kalantari
,
A.
, and
McDonell
,
V.
,
2015
, “
Parametric Analysis on Flashback Propensity With Various Fuel Compositions and Burner Materials
,”
ASME
Paper No. GT2015-43629.
41.
White
,
F. M.
,
1999
,
Fluid Mechanics
, 4th ed.,
McGraw-Hill
,
New York
.
42.
Peters
,
N.
,
1999
, “
The Turbulent Burning Velocity for Large-Scale and Small-Scale Turbulence
,”
J. Fluid Mech.
,
384
, pp.
107
132
.
43.
Veynante
,
D.
, and
Vervisch
,
L.
,
2002
, “
Turbulent Combustion Modeling
,”
Prog. Energy Combust. Sci.
,
28
(
3
), pp.
193
266
.
44.
Hultmark
,
M.
,
Bailey
,
S. C.
, and
Smits
,
A. J.
,
2010
, “
Scaling of Near-Wall Turbulence in Pipe Flow
,”
J. Fluid Mech.
,
649
, pp.
103
113
.
45.
Wu
,
X.
, and
Moin
,
P.
,
2008
, “
A Direct Numerical Simulation Study on the Mean Velocity Characteristics in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
608
, pp.
81
112
.
46.
Jiménez
,
J.
,
2013
, “
Near-Wall Turbulence
,”
Phys. Fluids
,
25
(
10
), p.
10130
.
47.
Drell
,
I. L.
, and
Belles
,
F. E.
,
1958
, “
Survey of Hydrogen Combustion Properties
,” NACA, Washington, DC, Report No. 1383.
48.
Bradley
,
D.
,
Lawes
,
M.
,
Liu
,
K.
,
Verhelst
,
S.
, and
Woolley
,
R.
,
2007
, “
Laminar Burning Velocities of Lean Hydrogen-Air Mixtures at Pressures up to 1.0 MPa
,”
Combust. Flame
,
149
(
1
), pp.
162
172
.
49.
Aung
,
K. T.
,
Hassan
,
M. T.
, and
Faeth
,
G. M.
,
1997
, “
Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure
,”
Combust. Flame
,
109
(
1
), pp.
1
24
.
50.
Ó Conaire
,
M.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.
You do not currently have access to this content.