The present study investigates the response of recent primary breakup models in the presence of an oscillating air flow and compares them to an experiment realized by Müller (2015, “Experimentelle Untersuchung des Zerstäubungsverhaltens Luftgestützter Brennstoffdüsen bei Oszillierenden Strömungen,” Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany). The experiment showed that the oscillating flow field has a significant influence on the Sauter mean diameter (SMD) up to a given frequency. This observation highlights the low-pass filter character of the prefilming airblast atomization phenomenon, which also introduces a significant phase shift on the dynamics of SMD of the generated spray. The models are tested in their original formulations without any calibration in order to assess their robustness versus different experiments in terms of SMD and time-response to an oscillating flow field. Special emphasis is put to identify the advantages and weaknesses of theses models, in order to facilitate their future implementation in computational fluid dynamics (CFD) codes. It is observed that some models need an additional calibration of the time constant in order to match the time shift observed in the experiment, whereas some others show a good agreement with the experiment without any modification. Finally, it is demonstrated that the low-pass filter character of the breakup phenomenon can be retrieved by considering the history of the local gas velocity, instead of the instantaneous velocity. This might result in a higher simulation fidelity within CFD codes.

References

1.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.
2.
Eckstein
,
J.
,
Freitag
,
E.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Von der Bank
,
R.
, and
Schilling
,
T.
,
2003
, “
Forced Low-Frequency Spray Characteristics of a Generic Airblast Swirl Diffusion Burner
,”
ASME
Paper No. GT2003-38646.
3.
Greenhalgh
,
D. A.
,
Jermy
,
M. C.
,
Doherty
,
W. G.
, and
Hussain
,
M.
,
2004
, “
The Response of Fuel Injector Sprays to Acoustic Forcing
,”
ASME
Paper No. ESDA2004-58617.
4.
Müller
,
A.
,
Koch
,
R.
,
Bauer
,
H.-J.
,
Hehle
,
M.
, and
Schäfer
,
O.
,
2006
, “
Performance of Prefilming Airblast Atomizers in Unsteady Flow Conditions
,”
ASME
Paper No. GT2006-90432.
5.
Gajan
,
P.
,
Strzelecki
,
A.
,
Platet
,
B.
,
Lecourt
,
R.
, and
Giuliani
,
F.
,
2007
, “
Investigation of Spray Behavior Downstream of an Aeroengine Injector With Acoustic Excitation
,”
J. Propul. Power
,
23
(
2
), pp.
390
397
.
6.
Bärow
,
E.
,
Koch
,
R.
, and
Bauer
,
H.
,
2013
, “
Comparison of Oscillation Modes of Spray and Gaseous Flames
,”
Eighth Mediterranean Combustion Symposium
(MCS), Izmir, Turkey, Sept. 8–13, Paper No.
EGTSC-26
https://www.its.kit.edu/english/Veroeffentlichungen_3637.php.
7.
Gepperth
,
S.
,
Guildenbecher
,
D.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2010
, “
Pre-Filming Primary Atomization: Experiments and Modeling
,”
International Conference for Liquid Atomization and Spray Systems
(ILASS), Brno, Czech Republic, Sept. 6–9, Paper No.
25
http://www.ilasseurope.org/ICLASS/ilass2010/FILES/FULL_PAPERS/025.pdf.
8.
Gepperth
,
S.
,
Müller
,
A.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2012
, “
Ligament and Droplet Characteristics in Prefilming Airblast Atomization
,”
12th Triennial International Annual Conference on Liquid Atomization and Spray Systems
(
ICLASS
), Heidelberg, Germany, Sept. 2–6.https://www.its.kit.edu/english/Veroeffentlichungen_3448.php
9.
Babinsky
,
E.
, and
Sojka
,
P.
,
2002
, “
Modeling Drop Size Distributions
,”
Prog. Energy Combust. Sci.
,
28
(
4
), pp.
303
329
.
10.
Müller
,
A.
,
2015
, “
Experimentelle Untersuchung des Zerstäubungsverhaltens Luftgestützter Brennstoffdüsen bei Oszillierenden Strömungen
,” Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany.
11.
Inamura
,
T.
,
Shirota
,
M.
,
Tsushima
,
M.
,
Kato
,
M.
,
Hamajima
,
S.
, and
Sato
,
A.
,
2012
, “
Spray Characteristics of Prefilming Type of Airblast Atomizer
,”
12th Triennial International Annual Conference on Liquid Atomization and Spray Systems
(
ICLASS
), Heidelberg, Germany, Sept. 2–6.http://www.ilasseurope.org/ICLASS/iclass2012_Heidelberg/Contributions/Paper-pdfs/Contribution1259_b.pdf
12.
Marmottant
,
P.
, and
Villermaux
,
E.
,
2004
, “
On Spray Formation
,”
J. Fluid Mech.
,
498
, pp.
73
111
.
13.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE
Paper No. 872089.
14.
Boukra
,
M.
,
Cartellier
,
A.
,
Ducasse
,
É.
,
Gajan
,
P.
,
Lalo
,
M.
,
Noel
,
T.
, and
Strzelecki
,
A.
,
2009
, “
Use of Faraday Instabilities to Enhance Fuel Pulverisation in Air-Blast Atomisers
,”
C. R. Méc.
,
337
(
6
), pp.
492
503
.
15.
Weber
,
C.
,
1931
, “
Zum Zerfall Eines Flüssigkeitsstrahles
,”
Z. Angew. Math. Mech.
,
11
(
2
), pp.
136
154
.
16.
Eckel
,
G.
,
Rachner
,
M.
,
Le Clercq
,
P.
, and
Aigner
,
M.
,
2013
, “
Semi-Empirical Primary Atomization Models for Transient Lagrangian Spray Simulation
,”
Eighth International Conference on Multiphase Flow
, Jeju, Korea, May 26–31, Paper No. ICMF2013-437.
17.
Tate
,
R.
, and
Marshall
,
W.
,
1953
, “
Atomization by Centrifugal Pressure Nozzles
,”
Chem. Eng. Prog.
,
49
(
4
), pp.
169
174
.
18.
Hsiang
,
L. P.
, and
Faeth
,
G. M.
,
1992
, “
Near-Limit Drop Deformation and Secondary Breakup
,”
Int. J. Multiphase Flow
,
18
(
5
), pp.
635
652
.
19.
Chou
,
W.-H.
, and
Faeth
,
G.
,
1998
, “
Temporal Properties of Secondary Drop Breakup in the Bag Breakup Regime
,”
Int. J. Multiphase Flow
,
24
(
6
), pp.
889
912
.
20.
Wert
,
K.
,
1995
, “
A Rationally-Based Correlation of Mean Fragment Size for Drop Secondary Breakup
,”
Int. J. Multiphase Flow
,
21
(
6
), pp.
1063
1071
.
21.
Chaussonnet
,
G.
,
Riber
,
E.
,
Vermorel
,
O.
,
Cuenot
,
B.
,
Gepperth
,
S.
, and
Koch
,
R.
,
2013
, “
Large Eddy Simulation of a Prefilming Airblast Atomizer
,”
International Conference on Liquid Atomization and Spray Systems
(
ILASS
), Chania, Greece, Sept. 1–4, pp. 870–877.http://www.cerfacs.fr/~cfdbib/repository/TR_CFD_13_59.pdf
22.
Chaussonnet
,
G.
,
Vermorel
,
O.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2016
, “
A New Phenomenological Model to Predict Drop Size Distribution in Large-Eddy Simulations of Airblast Atomizers
,”
Int. J. Multiphase Flow
,
80
, pp.
29
42
.
23.
Holz
,
S.
,
Chaussonnet
,
G.
,
Gepperth
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2016
, “
Comparison of the Primary Atomization Model PAMELA With Drop Size Distributions of an Industrial Prefilming Airblast Nozzle
,”
International Conference for Liquid Atomization and Spray Systems
(
ILASS
), Brighton, UK, Sept. 4–7.https://www.researchgate.net/profile/Simon_Holz/publication/307931957_Comparison_of_the_Primary_Atomization_Model_PAMELA_with_Drop_Size_Distributions_of_an_Industrial_Prefilming_Airblast_Nozzle/links/57ea76e908aeafc4e88a3a8f/Comparison-of-the-Primary-Atomization-Model-PAMELA-with-Drop-Size-Distributions-of-an-Industrial-Prefilming-Airblast-Nozzle.pdf?origin=publication_detail
You do not currently have access to this content.