The mechanical performances of turbocharger rotor bearings system are strongly coupled with the thermal effects of lubrication. This paper built an integrated three-dimensional thermohydrodynamic model for the rotor and semifloating ring bearings. The thermal viscosity and non-Newtonian effects of lubricant oil are involved. Three experimental cases with different oil supply temperatures and pressures are conducted to validate the numerical results. The prediction coincides well with the measured results. Subsynchronous responses jumping between the conical and cylindrical mode shapes happens. The thermal results show that the heat conduction and expansion of the solid parts can affect the temperature fields and clearances of the oil films. Furthermore, for the bearings with axial grooves, the underdeveloped thermal boundary layers exist in the inner film at high rotational speed. The complexity and heterogeneity of the oil film temperature and viscosity reveal the essentiality and significance of the three-dimensional thermohydrodynamic analysis.

References

1.
De Castro
,
H. F.
,
Cavalca
,
K. L.
, and
Nordmann
,
R.
,
2008
, “
Whirl and Whip Instabilities in Rotor-Bearing System Considering a Nonlinear Force Model
,”
J. Sound Vib.
,
317
(
1
), pp.
273
293
.
2.
San Andrés
,
L.
,
Rivadeneira
,
J. C.
,
Chinta
,
M.
,
Gjika
,
K.
, and
LaRue
,
G.
,
2007
, “
Nonlinear Rotordynamics of Automotive Turbochargers: Predictions and Comparisons to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
488
493
.
3.
Bonello
,
P.
,
Brennan
,
M.
, and
Holmes
,
R.
,
2002
, “
Non-Linear Modelling of Rotor Dynamic Systems With Squeeze Film Damper—An Efficient Integrated Approach
,”
J. Sound Vib.
,
249
(
4
), pp.
743
773
.
4.
Bonello
,
P.
,
2009
, “
Transient Modal Analysis of the Non-Linear Dynamics of a Turbocharger on Floating Ring Bearings
,”
Proc. Inst. Mech. Eng. Part J
,
223
(
1
), pp.
79
93
.
5.
Liang
,
F.
,
Xu
,
Q.
, and
Zhou
,
M.
,
2015
, “
Predicting the Frequency of the Rotor Whirl Excited by Semi-Floating Ring Bearing
,”
ASME
Paper No. DETC2015-47062.
6.
Liang
,
F.
,
Zhou
,
M.
, and
Xu
,
Q.
,
2016
, “
Effects of Semi-Floating Ring Bearing Outer Clearance on the Subsynchronous Oscillation of Turbocharger Rotor
,”
Chin. J. Mech. Eng.
,
29
(
5
), pp.
901
910
.
7.
Kirk
,
R.
,
Alsaeed
,
A.
,
Liptrap
,
J.
,
Lindsey
,
C.
,
Sutherland
,
D.
,
Dillon
,
B.
,
Saunders
,
E.
,
Chappell
,
M.
,
Nawshin
,
S.
,
Christian
,
E.
,
Ellis
,
A.
,
Mondschein
,
B.
,
Oliver
,
J.
, and
Sterling
,
J.
,
2008
, “
Experimental Test Results for Vibration of a High Speed Diesel Engine Turbocharger
,”
Tribol. Trans.
,
51
(
4
), pp.
422
427
.
8.
San Andrés
,
L.
,
Rivadeneira
,
J. C.
,
Gjika
,
K.
,
Groves
,
C.
, and
LaRue
,
G.
,
2007
, “
A Virtual Tool for Prediction of Turbocharger Nonlinear Dynamic Response: Validation Against Test Data
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1035
1046
.
9.
San Andrés
,
L.
, and
Kerth
,
J.
,
2004
, “
Thermal Effects on the Performance of Floating Ring Bearings for Turbochargers
,”
Proc. Inst. Mech. Eng. Part J
,
218
(
5
), pp.
437
450
.
10.
Gjika
,
K.
,
San Andrés
,
L.
, and
Larue
,
G.
,
2010
, “
Nonlinear Dynamic Behavior of Turbocharger Rotor-Bearing Systems With Hydrodynamic Oil Film and Squeeze Film Damper in Series: Prediction and Experiment
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041006
.
11.
Holt
,
C.
,
San Andrés
,
L.
,
Sahay
,
S.
,
Tang
,
P.
,
La Rue
,
G.
, and
Gjika
,
K.
,
2005
, “
Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
107
115
.
12.
San Andrés
,
L.
, and
Vistamehr
,
2010
, “
Nonlinear Rotordynamics of Vehicle Turbochargers: Parameters Affecting Sub Harmonic Whirl Frequencies and Their Jump
,”
8th IFToMM International Conference on Rotodynamics
, Seoul, Korea, Sept. 12–15, Paper No. P-1115.
13.
Kirk
,
R. G.
,
2014
, “
Experimental Evaluation of Hydrodynamic Bearings for a High Speed Turbocharger
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
72501
.
14.
San Andrés
,
L.
,
Barbarie
,
V.
,
Bhattacharya
,
A.
, and
Gjika
,
K.
,
2012
, “
On the Effect of Thermal Energy Transport to the Performance of (Semi) Floating Ring Bearing Systems for Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102507
.
15.
Tanveer
,
S.
,
Sharma
,
U. C.
, and
Prasad
,
R.
,
2006
, “
Rheology of Multigrade Engine Oils
,”
Indian J. Chem. Technol.
,
13
(
2
), pp.
180
184
.
16.
Gecim
,
B. A.
,
1990
, “
Non-Newtonian Effects of Multigrade Oils on Journal Bearing Performance
,”
Tribol. Trans.
,
33
(
3
), pp.
384
394
.
17.
Taylor
,
R. I.
,
2012
, “
Tribology and Energy Efficiency: From Molecules to Lubricated Contacts to Complete Machines
,”
Faraday Discuss.
,
156
(
1
), pp.
361
382
.
18.
Taylor
,
R.
,
1999
, “
The Inclusion of Lubricant Shear Thinning in the Short Bearing Approximation
,”
Proc. Inst. Mech. Eng. Part J
,
213
(
1
), pp.
35
46
.
19.
Boncompain
,
R.
, and
Frene
,
J.
,
1983
, “
A Study of the Thermohydrodynamic Performance of a Plain Journal Bearing Comparison Between Theory and Experiments
,”
ASME J. Lubr. Technol.
,
105
(3), pp.
422
428
.
20.
Kadam
,
K.
,
Banwait
,
S.
, and
Laroiya
,
S.
,
2014
, “
The Influence of Modified Viscosity-Temperature Equation on Thermohydrodynamic Analysis of Plain Journal Bearing
,”
Am. J. Mech. Eng.
,
2
(
6
), pp.
169
177
.
21.
Christensen
,
H.
,
1969
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
1013
1026
.
22.
Letalleur
,
N.
,
Plouraboué
,
F.
, and
Prat
,
M.
,
2002
, “
Average Flow Model of Rough Surface Lubrication: Flow Factors for Sinusoidal Surfaces
,”
ASME J. Tribol.
,
124
(
3
), pp.
539
546
.
You do not currently have access to this content.