Aircraft engines are subject to deterioration due to solid particle erosion. The environmental particulates encountered in service often feature broad particle size distributions and a generally large scatter of particle properties. In order to numerically calculate the erosive change of shape of the components, experimentally calibrated erosion models are required. Due to aerodynamic and mechanical particle size effects, erosion tests with different particle size distributions have to be calibrated individually. In this study, erosion experiments under high-pressure compressor conditions are conducted using a sand-blast type erosion rig. Flat plates out of Ti6Al4V were eroded at different impingement angles. The erodent used was quartz sand with size distributions corresponding to standardized Arizona Road Dust (ARD) grades A2, A3, and A4. The particle impact conditions were investigated using a high-speed shadowgraphy technique in combination with computational fluid dynamics (CFD) computations. Dimensional analyses were carried out in respect to the particle transport process and the material removal process. A nondimensional erosion model is derived. The experimental shadowgraphy results are corrected using numerically calibrated similarity parameters for the particle impact conditions. Thus, the influence of the aerodynamic particle size effect was eliminated by correcting the impact conditions. The isolated mechanical particle size effect is demonstrated. It is shown that wear increases and that the modeled erosion rate maximum shifts toward larger impact angles when using coarser particle size distributions.

References

1.
Castorrini
,
A.
,
Corsini
,
A.
,
Morabito
,
F.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2017
, “
Numerical Simulation With Adaptive Boundary Method for Predicting Time Evolution of Erosion Processes
,”
ASME
Paper No. GT2017-64675.
2.
Solnordal
,
C. B.
, and
Wong
,
C. Y.
,
2012
, “
Predicting Surface Profile Evolution Caused by Solid Particle Erosion
,”
Ninth International Conference on CFD in the Minerals and Process Industries
, Melbourne, Australia, Dec. 10–12, pp.
10
12
.http://www.cfd.com.au/cfd_conf12/PDFs/054SOL.pdf
3.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Di Mare
,
L.
, and
Montomoli
,
F.
,
2017
, “
EBFOG: Deposition, Erosion and Detachment on High Pressure Turbine Vanes
,”
ASME
Paper No. GT2017-64526.
4.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
(Pt. 2), pp.
443
457
.
5.
Misra
,
A.
, and
Finnie
,
I.
,
1981
, “
On the Size Effect in Abrasive and Erosive Wear
,”
Wear
,
65
(
3
), pp.
359
373
.
6.
Bahadur
,
S.
, and
Badruddin
,
R.
,
1990
, “
Erodent Particle Characterization and the Effect of Particle Size and Shape on Erosion
,”
Wear
,
138
(
1–2
), pp.
189
208
.
7.
Zhou
,
J. R.
, and
Bahadur
,
S.
,
1989
, “
Effect of Blending of Silicon Carbide Particles in Varying Sizes on the Erosion of Ti-6Al-4V
,”
Wear
,
132
(
2
), pp.
235
246
.
8.
Tilly
,
G. P.
,
1973
, “
A Two Stage Mechanism of Ductile Erosion
,”
Wear
,
23
(
1
), pp.
87
96
.
9.
Finnie
,
I.
,
1995
, “
Some Reflections on the Past and Future of Erosion
,”
Wear
,
186–187
(Pt. 1), pp.
1
10
.
10.
Laitone
,
J. A.
,
1979
, “
Aerodynamic Effects in the Erosion Process
,”
Wear
,
56
(
1
), pp.
239
246
.
11.
Laitone
,
J. A.
,
1979
, “
Erosion Prediction Near a Stagnation Point Resulting From Aerodynamically Entrained Solid Particles
,”
J. Aircr.
,
16
(
12
), pp.
809
814
.
12.
Dosanjh
,
S.
, and
Humphrey
,
J. A.
,
1985
, “
The Influence of Turbulence on Erosion by a Particle-Laden Fluid Jet
,”
Wear
,
102
(
4
), pp.
309
330
.
13.
Humphrey
,
J.
,
1990
, “
Fundamentals of Fluid Motion in Erosion by Solid Particle Impact
,”
Int. J. Heat Fluid Flow
,
11
(
3
), pp.
170
195
.
14.
Deng
,
T.
,
Bingley
,
M. S.
,
Bradley
,
M.
, and
de Silva
,
S. R.
,
2008
, “
A Comparison of the Gas-Blast and Centrifugal-Accelerator Erosion Testers: The Influence of Particle Dynamics
,”
Wear
,
265
(
7–8
), pp.
945
955
.
15.
Hufnagel
,
M.
,
Werner-Spatz
,
C.
,
Koch
,
C.
, and
Staudacher
,
S.
,
2018
, “
High-Speed Shadowgraphy Measurements of an Erosive Particle-Laden Jet Under High-Pressure Compressor Conditions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012604
.
16.
Rudinger
,
G.
,
1980
,
Fundamentals of Gas Particle Flow
(Handbook of Powder Technology, Vol.
2
),
Elsevier Science
,
Oxford, UK
.
17.
Israel
,
R.
, and
Rosner
,
D. E.
,
2007
, “
Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles From a Compressible Gas Flow
,”
Aerosol Sci. Technol.
,
2
(
1
), pp.
45
51
.
18.
Wessel
,
R. A.
, and
Righi
,
J.
,
1988
, “
Generalized Correlations for Inertial Impaction of Particles on a Circular Cylinder
,”
Aerosol Sci. Technol.
,
9
(
1
), pp.
29
60
.
19.
Lundgreen
,
R. K.
,
2017
, “
Pressure and Temperature Effects on Particle Deposition in an Impinging Flow
,”
ASME
Paper No. GT2017-64649.
20.
Rader
,
D. J.
, and
Marple
,
V. A.
,
2011
, “
Effect of Ultra-Stokesian Drag and Particle Interception on Impaction Characteristics
,”
Aerosol Sci. Technol.
,
4
(
2
), pp.
141
156
.
21.
Finnie
,
I.
,
1958
, “
The Mechanism of Erosion of Ductile Metals
,”
Third U.S. National Congress of Applied Mechanics
, Providence, RI, June 11–14, pp.
527
532
.
22.
Hutchings
,
I. M.
,
1981
, “
A Model for the Erosion of Metals by Spherical Particles at Normal Incidence
,”
Wear
,
70
(
3
), pp.
269
281
.
23.
Sundararajan
,
G.
, and
Shewmon
,
P. G.
,
1983
, “
A New Model for the Erosion of Metals at Normal Incidence
,”
Wear
,
84
(
2
), pp.
237
258
.
24.
Bitter
,
J.
,
1963
, “
A Study of Erosion Phenomena—Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
25.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.
26.
Oka
,
Y. I.
,
Ohnogi
,
H.
,
Hosokawa
,
T.
, and
Matsumura
,
M.
,
1997
, “
The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
203–204
, pp.
573
579
.
27.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
259
(
1–6
), pp.
95
101
.
28.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
29.
Finnie
,
I.
,
1972
, “
Some Observations on the Erosion of Ductile Metals
,”
Wear
,
19
(
1
), pp.
81
90
.
30.
Finnie
,
I.
, and
McFadden
,
D. H.
,
1978
, “
On the Velocity Dependence of the Erosion of Ductile Metals by Solid Particles at Low Angles of Incidence
,”
Wear
,
48
(
1
), pp.
181
190
.
31.
Chen
,
D.
,
Sarumi
,
M.
,
Al-Hassani
,
S.
,
Gan
,
S.
, and
Yin
,
Z.
,
1997
, “
A Model for Erosion at Normal Impact
,”
Wear
,
205
(
1–2
), pp.
32
39
.
32.
Schrade
,
M.
, and
Staudacher
,
S.
,
2014
, “
High-Speed Test Rig for the Investigation of Erosion Damage of Axial Compressor Blades
,” Deutscher Luft- und Raumfahrtkongress 2014, Augsburg, Germany, Sept. 16–18, Paper No.
DLRK2014_340033
.http://www.dglr.de/publikationen/2014/340033.pdf
33.
Schrade
,
M.
,
Staudacher
,
S.
, and
Voigt
,
M.
,
2015
, “
Experimental and Numerical Investigation of Erosive Change of Shape for High-Pressure Compressors
,”
ASME
Paper No. GT2015-42061.
34.
Schrade
,
M.
,
2016
,
Untersuchungen zum Einfluss des Strahlverschleißes auf Hochdruckverdichterschaufeln von Turboflugtriebwerken
, 1st ed.,
Verlag Dr. Hut
,
München, Germany
.
35.
Zapp
,
A. G.
,
2016
, “
Specialty Materials TiAl6V4 Grade 5
,” Zapp Materials Engineering GmbH, Ratingen, Germany, Standard No.
ISO 5852-3
.http://www.rsalloys.eu/cmsMateriali/produzioni/47/TiAl6V4_e_02.12.pdf
36.
KSL Staubtechnik GmbH
,
2016
, “
Arizona Dust Quartz
,” KSL Staubtechnik GmbH, Lauingen, Germany, Standard No. ISO 12103-1.
37.
ISO
,
2016
, “
Road Vehicles—Test Contaminants for Filter Evaluation—Part 1: Arizona Test Dust
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 12103-1
.https://www.iso.org/obp/ui/#iso:std:iso:12103:-1:ed-2:v1:en
38.
LaVision
,
2012
, “
Particlemaster Shadow Product-Manual 8.1
,”
LaVision GmbH
,
Goettingen, Germany
.
39.
ANSYS
,
2017
, “
Fluent Theory Guide v18.1
,”
ANSYS Inc
.,
Canonsburg, PA
.
40.
Shukla
,
S. K.
,
Shukla
,
P.
, and
Ghosh
,
P.
,
2014
, “
Evaluation of Numerical Schemes for Dispersed Phase Modeling of Cyclone Separators
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
2
), pp.
235
246
.
41.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.
42.
Oesterlé
,
B.
, and
Dinh
,
T. B.
,
1998
, “
Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers
,”
Exp. Fluids
,
25
(
1
), pp.
16
22
.
43.
Dennis
,
S. C. R.
,
Singh
,
S. N.
, and
Ingham
,
D. B.
,
1980
, “
The Steady Flow Due to a Rotating Sphere at Low and Moderate Reynolds Numbers
,”
J. Fluid Mech.
,
101
(
2
), p.
257
.
44.
Wakeman
,
T.
, and
Tabakoff
,
W.
,
1982
, “
Measured Particle Rebound Characteristics Useful for Erosion Prediction
,”
ASME
Paper No. 82-GT-170.
45.
Goodwin
,
J. E.
,
Sage
,
W.
, and
Tilly
,
G. P.
,
1969
, “
Study of Erosion by Solid Particles
,”
Proc. Inst. Mech. Eng.
,
184
(1), pp.
279
292
.
You do not currently have access to this content.