This paper shows experimental results obtained from a T100 microturbine connected with different volume sizes. The activity was carried out with the test rig developed at the University of Genoa for hybrid system emulation. However, these results apply to all the advanced cycles where a microturbine is connected with an additional external component responsible for volume size increase. Even if the tests were performed with a microturbine, similar analyses can be extended to large size turbines. A modular vessel was used to perform and to compare the tests with different volume sizes. To highlight the volume size effect, preliminary experimental results were carried out considering the transient response due to an on/off bleed valve operation. So, the main differences between system parameters obtained for a bleed line closing operation are compared considering three different volume sizes. The main results reported in this paper are related to surge operations. To produce surge conditions in this test rig, a valve operating in the main air path was closed to generate unstable behavior for the three different volume sizes. Particular focus was devoted to the operational curve plotted on the compressor map. The vibration frequency analysis showed significant amplitude increase not only during surge events but also close to the unstable condition. In details, possible surge precursor indicators were obtained to be used for the detection of risky machine operations. The experimental data collected during these tests are analyzed with the objective of designing control systems to prevent surge conditions.

References

1.
Sheikhbeigi
,
B.
, and
Ghofrani
,
M. B.
,
2007
, “
Thermodynamic and Environmental Consideration of Advanced Gas Turbine Cycles With Reheat and Recuperator
,”
Int. J. Environ. Sci. Technol.
,
4
(
2
), pp.
253
262
.
2.
Fernández
,
P.
, and
Miller
,
F.
,
2013
, “
Assessment of the Overall Efficiency of Gas Turbine-Driven CSP Plants Using Small Particle Solar Receivers
,”
Energy Procedia
,
49
, pp.
334
343
.
3.
Korakianitis
,
T.
,
Grantstrom
,
J.
,
Wassingbo
,
P.
, and
Massardo
,
A. F.
,
2005
, “
Parametric Performance of Combined-Cogeneration Power Plants With Various Power and Efficiency Enhancements
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
65
72
.
4.
Carrero
,
M. M.
,
De Paepe
,
W.
,
Parente
,
A.
, and
Contino
,
F.
,
2016
, “
T100 mGT Converted Into mHAT for Domestic Applications: Economic Analysis Based on Hourly Demand
,”
Appl. Energy
,
164
, pp.
1019
1027
.
5.
Jia
,
Z.
,
Sun
,
J.
,
Dobbs
,
H.
, and
King
,
J.
,
2015
, “
Feasibility Study of Solid Oxide Fuel Cell Engines Integrated With Sprinter Gas Turbines: Modeling, Design and Control
,”
J. Power Sources
,
275
, pp.
111
125
.
6.
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Turbomachinery for the Air Management and Energy Recovery in Fuel Cell Gas Turbine Hybrid Systems
,”
Energy
,
35
(
2
), pp.
764
777
.
7.
Henke
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2017
, “
Introduction of a New Numerical Simulation Tool to Analyze Micro Gas Turbine Cycle Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
139
(4), p.
042601
.
8.
Wolf
,
J.
,
Barone
,
F.
, and
Yan
,
J.
,
2002
, “
Performance Analysis of Evaporative Biomass Air Turbine Cycle With Gasification for Topping Combustion
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
757
761
.
9.
Qiu
,
K.
,
Yan
,
L.
,
Ni
,
M.
,
Wang
,
C.
,
Xiao
,
G.
,
Luo
,
Z.
, and
Cen
,
K.
,
2015
, “
Simulation and Experimental Study of an Air Tube-Cavity Solar Receiver
,”
Energy Convers. Manage.
,
103
, pp.
847
858
.
10.
Luo
,
Z.
,
Wang
,
C.
,
Xiao
,
G.
,
Ni
,
M.
, and
Cen
,
K.
,
2014
, “
Simulation and Experimental Study on Honeycomb-Ceramic Thermal Energy Storage for Solar Thermal Systems
,”
Appl. Therm. Eng.
,
73
(1), pp.
622
628
.
11.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part I: Early Development Activities
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
2
), pp.
139
157
.
12.
Kabalyk
,
K.
,
Liskiewicz
,
G.
,
Horodko
,
L.
,
Kryłłowicz
,
W.
, and
Stickland
,
M.
,
2014
, “
Use of Pressure Spectral Maps for Analysis of Influence of the Plenum Volume on the Surge in Centrifugal Blower
,”
ASME
Paper No. GT2014-26931.
13.
Liskiewicz
,
G.
, and
Horodko
,
L.
,
2015
, “
Time-Frequency Analysis of the Surge Onset in the Centrifugal Blower
,”
Open Eng.
,
5
(1), pp.
299
306
.
14.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2011
, “
MGT/HTFC Hybrid System Emulator Test Rig: Experimental Investigation on the Anodic Recirculation System
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
2
), p.
021012
.
15.
Larosa
,
L.
,
Traverso
,
A.
,
Ferrari
,
M. L.
, and
Zaccaria
,
V.
,
2015
, “
Pressurized SOFC Hybrid Systems: Control System Study and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
137
(3), p.
031602
.
16.
Greco
,
A.
,
Sorce
,
A.
,
Littwin
,
R.
,
Costamagna
,
P.
, and
Magistri
,
L.
,
2014
, “
Reformer Faults in SOFC Systems: Experimental and Modeling Analysis, and Simulated Fault Maps
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
21700
21713
.
17.
Baudoin
,
S.
,
Vechiu
,
I.
,
Camblong
,
H.
,
Vinassa
,
J.-M.
, and
Barelli
,
L.
,
2016
, “
Sizing and Control of a Solid Oxide Fuel Cell/Gas Microturbine Hybrid Power System Using a Unique Inverter for Rural Microgrid Integration
,”
Appl. Energy
,
176
, pp.
272
281
.
18.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis—Part I: Experimental Investigation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
305
311
.
19.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis—Part II: Numerical Simulation and Dynamic Control Parameters Evaluation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
312
320
.
20.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Hybrid System Test Rig: Start-Up and Shutdown Physical Emulation
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
2
), p.
021005
.
21.
McLarty
,
D.
,
Kuniba
,
Y.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2012
, “
Experimental and Theoretical Evidence for Control Requirements in Solid Oxide Fuel Cell Gas Turbine Hybrid Systems
,”
J. Power Sources
,
209
, pp.
195
203
.
22.
Pezzini
,
P.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2013
, “
Avoiding Compressor Surge During Emergency Shutdown Hybrid Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102602
.
23.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
A Distributed Real-Time Model of Degradation in a Solid Oxide Fuel Cell—Part I: Model Characterization
,”
J. Power Sources
,
311
, pp.
175
181
.
24.
Fanyu
,
L.
, and
Jun
,
L.
,
2016
, “
Stall Warning Approach With Application to Stall Precursor-Suppressed Casing Treatment
,”
ASME
Paper No. GT2016-58172.
25.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2016
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME
Paper No. GT2016-57168.
26.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Sorce
,
A.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2014
, “
Real-Time Tool for Management of Smart Polygeneration Grids Including Thermal Energy Storage
,”
Appl. Energy
,
130
, pp.
670
678
.
27.
Zhou
,
N.
,
Yang
,
C.
,
Tucker
,
D.
,
Pezzini
,
P.
, and
Traverso
,
A.
,
2016
, “
Transfer Function Development for Control of Cathode Airflow Transients in Fuel Cell Gas Turbine Hybrid Systems
,”
Int. J. Hydrogen Energy
,
40
(4), pp.
1967
1979
.
28.
Hohloch
,
M.
,
Huber
,
A.
, and
Aigner
,
M.
,
2016
, “
Experimental Investigation of a SOFC/MGT Hybrid Power Plant Test Rig: Impact and Characterization of a Fuel Cell Emulator
,”
ASME
Paper No. GT2016-57747.
29.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2016
, “
Acoustic and Vibrational Analyses on a Multi-Stage Compressor for Unstable Behavior Precursor Identification
,”
ASME
Paper No. GT2007-27040.
30.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2016
, “
Smart Polygeneration Grids: Experimental Performance Curves of Different Prime Movers
,”
Appl. Energy
,
162
, pp.
662
630
.
31.
Scribd HQ
,
2017
, “
LS Absorption Chiller
,” Scribd HQ, San Francisco, CA, accessed Sept. 1, 2017, https://www.scribd.com/document/319894047/Absorption-Chillers-52p
32.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
J. Eng. Power
,
98
(
2
), pp.
190
198
.
33.
Hagino
,
N.
,
Uda
,
K.
, and
Kashiwabara
,
Y.
,
2003
, “
Prediction and Active Control of Surge Inception of a Centrifugal Compressor
,”
The International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7, Paper No.
TS-038
.
34.
Moon
,
C.
,
1987
,
Chaotic Vibrations
,
Wiley
,
Hoboken, NJ
.
35.
Adams
,
M. L.
, and
Abu-Mahfouz
,
I. A.
,
1994
, “
Exploratory Research on Chaos Concepts as Diagnostic Tools for Assessing Rotating Machinery Vibration Signatures
,”
IFTOMM Third International Conference on Rotor Dynamics
, Chicago, IL, Sept. 7–9, pp. 29–39.
36.
Abu-Mahfouz
,
I. A.
,
1993
, “
Routes to Chaos in Rotor Dynamics
,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
37.
Hillborn
,
R.
,
1994
,
Chaos and Non Linear Dynamics
,
Oxford University Press
,
Oxford, UK
.
38.
Ehrich
,
F. F.
,
1991
, “
Some Observations of Chaotic Vibration Phenomena in High-Speed Rotordynamics
,”
ASME J. Vib. Acoust.
,
113
(
1
), pp.
50
57
.
39.
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N. A.
,
1978
, “
Prediction of Compressor Performance in Rotating Stall
,”
ASME J. Eng. Power
,
100
(
1
), pp.
1
12
.
You do not currently have access to this content.