The wet compressor (WC) has become a reliable way to reduce gas emissions and increase gas turbine efficiency. However, fuel source diversification in the short and medium terms presents a challenge for gas turbine operators to know how the WC will respond to changes in fuel composition. For this study, we assessed the operational data of two thermal power generators, with outputs of 610 MW and 300 MW, in Colombia. The purpose was to determine the maximum amount of water that can be added into a gas turbine with a WC system, as well as how the NOx/CO emissions vary due to changes in fuel composition. The combustion properties of different gaseous hydrocarbon mixtures at wet conditions did not vary significantly from each other—except for the laminar burning velocity. It was found that the fuel/air equivalence ratio in the turbine reduced with lower CH4 content in the fuel. Less water can be added to the turbine with leaner combustion; the water/fuel ratio was decreased over the range of 1.4–0.4 for the studied case. The limit is mainly due to a reduction in flame temperature and major risk of lean blowout (LBO) or dynamic instabilities. A hybrid reaction mechanism was created from GRI-MECH 3.0 and NGIII to model hydrocarbons up to C5 with NOx formation. The model was validated with experimental results published previously in literature. Finally, the effect of atmospheric water in the premixed combustion was analyzed and explained.

References

1.
Bracco
,
S.
,
Pierfederici
,
A.
, and
Trucco
,
A.
,
2007
, “
The Wet Compression Technology for Gas Turbine Power Plants: Thermodynamic Model
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
699
704
.
2.
Siemens
, 2017, “Siemens—Wet Compression,” Siemens AG, Munich, Germany, accessed Mar. 16, 2017, http://www.energy.siemens.com/ru/en/services/fossil-power-generation/modernization-upgrades/wet-compression.htm#content=GeneralProduct Information
3.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.
4.
Göke
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on Nitrogen Oxide Formation in Premixed Methane/Hydrogen Flames
,”
J. Propul. Power
,
29
(
1
), pp.
249
260
.
5.
Go¨ke
,
S.
,
Terhaar
,
S.
,
Schimek
,
S.
,
Go¨ckeler
,
K.
, and
Paschereit
,
C. O.
,
2011
, “Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions,”
ASME
Paper No. GT2011-45696.
6.
Göke
,
S.
,
Albin
,
E.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2012
, “
Ultra-Wet Combustion for High Efficiency, Low Emission Gas Turbines
,”
Sixth International Gas Turbine Conference (IGTC)
, Brussels, Belgium, Oct. 17–18, Paper No.
17
.http://fd.tu-berlin.de/fileadmin/publications/Goeke2012c.pdf
7.
Jansohn
,
P.
,
2013
,
Modern Gas Turbine Systems: High Efficiency, Low Emission, Fuel Flexible Power Generation
,
Woodhead Publishing
, Cambridge, UK.
8.
Wang
,
H.
,
2015
, “
Combustion Chemistry
,”
Princeton-CEFRC Summer School on Combustion
(Lecture), Vol.
3
, The Combustion Energy Frontier Research Center (CEFRC), Princeton, NJ.
9.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
.
10.
Sutton
,
J. A.
, and
Fleming
,
J. W.
,
2008
, “
Towards Accurate Kinetic Modeling of Prompt NO Formation in Hydrocarbon Flames Via the NCN Pathway
,”
Combust. Flame
,
154
(
3
), pp.
630
636
.
11.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2016
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.
12.
Pugh
,
D. G.
,
Bowen
,
P. J.
,
Marsh
,
R.
,
Crayford
,
A. P.
,
Runyon
,
J.
,
Morris
,
S.
,
Valera-Medina
,
A.
, and
Giles
,
A.
,
2017
, “
Dissociative Influence of H2O Vapour/Spray on Lean Blowoff and NOx Reduction for Heavily Carbonaceous Syngas Swirling Flames
,”
Combust. Flame
,
177
, pp.
37
48
.
13.
Donato
,
N.
,
Aul
,
C.
,
Petersen
,
E.
,
Zinner
,
C.
,
Curran
,
H.
, and
Bourque
,
G.
,
2010
, “
Ignition and Oxidation of 50/50 Butane Isomer Blends
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
051502
.
14.
Healy
,
D.
,
Donato
,
N. S.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Zinner
,
C. M.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
N-Butane: Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
,
157
(
8
), pp.
1526
1539
.
15.
Healy
,
D.
,
Donato
,
N. S.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Zinner
,
C. M.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Isobutane Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
,
157
(
8
), pp.
1540
1551
.
16.
Healy
,
D.
,
Kopp
,
M. M.
,
Polley
,
N. L.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Methane/N-Butane Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Energy Fuels
,
24
(
3
), pp.
1617
1627
.
17.
Healy
,
D.
,
Kalitan
,
D. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Oxidation of C1−C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.
18.
UC San Diego,
2014
, “Chemical-Kinetic Mechanisms for Combustion Applications,” University of California, San Diego, CA, accessed Mar. 17,
2017
, http://combustion.ucsd.edu
19.
Taamallah
,
S.
,
Vogiatzaki
,
K.
,
Alzahrani
,
F. M.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Ghoniem
,
A. F.
,
2015
, “
Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations
,”
Appl. Energy
,
154
, pp.
1020
1047
.
20.
UPME
,
2015
, “Balance de Gas Natural En Colombia 2015–2023,” Unidad de Planeación Minero Energética, Bogotá, Colombia, pp.
1
29
.
21.
Göke
,
S.
,
Schimek
,
S.
,
Terhaar
,
S.
,
Reichel
,
T.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Fleck
,
J.
,
Griebel
,
P.
, and
Paschereit
,
C.
O.,
2014
, “
Influence of Pressure and Steam Dilution on NOx and CO Emissions in a Premixed Natural Gas Flame
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091508
.
22.
Michaud
,
M. G.
,
Westmoreland
,
P. R.
, and
Feitelberg
,
A. S.
,
1992
, “
Chemical Mechanisms of NOx Formation for Gas Turbine Conditions
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
879
887
.
23.
Hoffmann
,
S.
,
Habisreuther
,
P.
, and
Lenze
,
B.
,
1994
, “
Development and Assessment of Correlations for Predicting Stability Limits of Swirling Flames
,”
Chem. Eng. Process.
,
33(5)
, pp.
393
400
.
24.
Sébastien
,
D.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.
25.
Benim
,
A. C.
,
Syed
,
K. J.
,
Benim
,
A. C.
, and
Syed
,
K. J.
,
2015
,
Flashback Mechanisms in Lean Premixed Gas Turbine Combustion
,
Academic Press
, Boston, MA.
26.
De Paepe
,
W.
,
Sayad
,
P.
,
Bram
,
S.
,
Klingmann
,
J.
, and
Contino
,
F.
,
2016
, “
Experimental Investigation of the Effect of Steam Dilution on the Combustion of Methane for Humidified Micro Gas Turbine Applications
,”
Combust. Sci. Technol.
,
188
(
8
), pp.
1199
1219
.
27.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Ronald
,
K.
,
Hanson
,
S. S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V.
, and
Qin
,
Z.
, 2000, “GRI-Mech Home Page,” Gas Technology Institute, Des Plaines, IL, accessed Feb. 9,
2017
, http://combustion.berkeley.edu/gri-mech/
28.
Wang
,
H.
,
Dames
,
E.
,
Sirjean
,
B.
,
Sheen
,
D. A.
,
Tangko
,
R.
,
Violi
,
A.
,
Lai
,
J. Y. W.
,
Egolfopoulos
,
F. N.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2010
, “
A High-Temperature Chemical Kinetic Model of N-Alkane (Upto N-Dodecane), Cyclohexane, and Methyl-, Ethyl-, N-Propyl and N-Butyl-Cyclohexane Oxidation at High Temperatures
,”
JetSurF Version 2.0
, Stanford University, Stanford, CA, p.
19
.
29.
Goswami
,
M.
,
Volkov
,
E. N.
,
Konnov
,
A. A.
,
Bastiaans
,
R. J. M.
, and
de Goey
,
L. P. H.
,
2008
, “Updated Kinetic Mechanism for NOx Prediction and Hydrogen Combustion,” Technische Universiteit Eindhoven, Eindhoven, The Netherlands, Technical Report No.
FP7-ENERGY-2008-TREN-1
.http://www.h2-igcc.eu/Pdf/WP1%201_Milestone2%202_TUe%20Report.pdf
30.
Promigas
,
2016
, “Promigas Inicio,” Promigas, Barranquilla, Colombia, accessed June 1, 2016, http://www.promigas.com/Es/Paginas/Default.aspx
31.
Andrews
,
G. E.
,
2013
, “
Ultra-Low Nitrogen Oxides (NOx) Emissions Combustion in Gas Turbine Systems
,”
Modern Gas Turbine Systems
,
Elsevier
, Cambridge, UK, pp.
715
790
.
32.
Amell
,
A. A.
, and
Cadavid
,
F. J.
,
2002
, “
Influence of the Relative Humidity on the Air Cooling Thermal Load in Gas Turbine Power Plant
,”
Appl. Therm. Eng.
,
22
(
13
), pp.
1529
1533
.
33.
Bhargava
,
A.
,
Kendrick
,
D. W.
,
Colket
,
M. B.
,
Sowa
,
W. A.
, and
Hartford
,
E.
,
2000
, “Pressure Effect on NOx and CO Emissions in Industrial Gas Turbines,”
ASME
Paper No. 2000-GT-0097.
34.
Mazas
,
A. N.
,
Fiorina
,
B.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2011
, “
Effects of Water Vapor Addition on the Laminar Burning Velocity of Oxygen-Enriched Methane Flames
,”
Combust. Flame
,
158
(
12
), pp.
2428
2440
.
35.
Albin
,
E.
,
Nawroth
,
H.
,
Göke
,
S.
,
D’Angelo
,
Y.
, and
Paschereit
,
C. O.
,
2013
, “
Experimental Investigation of Burning Velocities of Ultra-Wet Methane-Air-Steam Mixtures
,”
Fuel Process. Technol.
,
107
, pp.
27
35
.
36.
Kobayashi
,
H.
,
Yata
,
S.
,
Ichikawa
,
Y.
, and
Ogami
,
Y.
,
2009
, “
Dilution Effects of Superheated Water Vapor on Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2607
2614
.
37.
Zhang
,
H.
,
Zhang
,
X.
, and
Zhu
,
M.
,
2012
, “
Experimental Investigation of Thermoacoustic Instabilities for a Model Combustor With Varying Fuel Components
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031504
.
38.
Cabot
,
G.
,
Vauchelles
,
D.
,
Taupin
,
B.
, and
Boukhalfa
,
A.
,
2004
, “
Experimental Study of Lean Premixed Turbulent Combustion in a Scale Gas Turbine Chamber
,”
Exp. Therm. Fluid Sci.
,
28
(
7
), pp.
683
690
.
39.
Stadlmair
,
N. V.
, and
Sattelmayer
,
T.
,
2016
, “Measurement and Analysis of Flame Transfer Functions in a Lean-Premixed, Swirl-Stabilized Combustor With Water Injection,”
AIAA
Paper No. 2016-1157.
You do not currently have access to this content.