Increasingly stringent regulations on NOx emissions are enforced by governments owing to their contribution in the formation of ozone, smog, fine aerosols, acid rains, and nutrient pollution of surface water, which affect human health and the environment. The design of high-efficiency, low-emission combustors achieving these ever-decreasing emission standards requires thermochemical mechanisms of sufficiently high accuracy. Recently, a comprehensive set of experimental data, collected through laser-based diagnostics in atmospheric, jet-wall, stagnation, premixed flames, was published for all isomers of C1–C4 alkane and alcohol fuels. The rapid formation of NO through the flame front via the prompt (Fenimore) route was shown to be strongly coupled to the maximum concentration of the methylidyne radical, [CH]peak, and the flow residence time within the CH layer. A proper description of CH formation is then a prerequisite for accurate predictions of NO concentrations in hydrocarbon–air flames. However, a comparison against the Laser-induced fluorescence (LIF) experimental data of Versailles, P., et al. (2016, “Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1–C4 Alkanes,” Combust. Flame, 165, pp. 109--124) revealed that (1) modern thermochemical mechanisms are unable to accurately capture the stoichiometric dependence of [CH]peak, and (2) for a given equivalence ratio, the predictions of different mechanisms span over more than an order of magnitude. This paper presents an optimization of the specific rate of a selection of nine elementary reactions included in the San Diego combustion mechanism. A quasi-Newton algorithm is used to minimize an objective function defined as the sum of squares of the relative difference between the numerical and experimental CH–LIF data of Versailles, P., et al. (2016, “Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1–C4 Alkanes,” Combust. Flame, 165, pp. 109--124), while constraining the specific rates to physically reasonable values. A mechanism properly describing CH formation for lean to rich, C1–C3 alkane–air flames is obtained. This optimized mechanism will enable accurate predictions of prompt-NO formation over a wide range of equivalence ratios and alkane fuels. Suggestions regarding which reactions require further investigations, either through experimental or theoretical assessments of the individual specific rates, are also provided.

References

1.
Jacob
,
D. J.
,
2000
,
Introduction to Atmospheric Chemistry
,
Princeton University Press
, Princeton, NJ.
2.
Vallero
,
D.
,
2014
,
Fundamentals of Air Pollution
, 5th ed.,
Academic Press
, Waltham, MA.
3.
Lieuwen
,
T.
, and
Yang
,
V.
,
2013
,
Gas Turbine Emissions
,
Cambridge
, New York.
4.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
, pp.
287
338
.
5.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2016
, “
NO Formation in Premixed Flames of C1–C3 Alkanes and Alcohols
,”
Combust. Flame
,
169
, pp.
242
260
.
6.
Watson, G. M. G., Versailles, P., and Bergthorson, J. M.,
2017
, “
NO Formation in Rich Premixed Flames of C1–C4 Alkanes and Alcohols
,”
Proc. Combust. Inst.
,
36
(1), pp.
627
635
.
7.
Versailles
,
P.
,
Watson
,
G. M. G.
,
Lipardi
,
A. C. A.
, and
Bergthorson
,
J. M.
,
2016
, “
Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1–C4 Alkanes
,”
Combust. Flame
,
165
, pp.
109
124
.
8.
University of California at San Diego,
2005
, “Chemical-Kinetic Mechanisms for Combustion Applications,” Combustion Research Group, San Diego, CA, accessed Nov. 21, 2017, http://combustion.ucsd.edu
9.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
1999
, “GRI-Mech 3.0.,” GRI-Mech, accessed Nov. 21, 2017, http://www.me.berkeley.edu/gri_mech/
10.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds,” University of Souther California, Los Angeles, CA, http://ignis.usc.edu/USC_Mech_II.htm
11.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kin.
,
45
(
10
), pp.
638
675
.
12.
Sutton
,
J. A.
, and
Driscoll
,
J. F.
,
2003
, “
Optimization of CH Fluorescence Diagnostics in Flames: Range of Applicability and Improvements With Hydrogen Addition
,”
Appl. Opt.
,
42
(
15
), pp.
2819
2828
.
13.
Bergthorson
,
J. M.
,
2005
, “
Experiments and Modeling of Impinging Jets and Premixed
Hydrocarbon Flames,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.
14.
Davis
,
S. G.
,
Law
,
C. K.
, and
Wang
,
H.
,
1999
, “
Propene Pyrolysis and Oxidation Kinetics in a Flow Reactor and Laminar Flames
,”
Combust. Flame
,
119
(4), pp.
375
399
.
15.
University of California at San Diego,
2003
, “Chemical-Kinetic Mechanisms for Combustion Applications,” Combustion Research Group, San Diego, CA, accessed Nov. 21, 2017, http://combustion.ucsd.edu
16.
Frenklach
,
M.
,
Wang
,
H.
, and
Rabinowitz
,
M. J.
,
1992
, “
Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method-Combustion of Methane
,”
Prog. Energy Combust. Sci.
,
18
(1), pp.
47
73
.
17.
Gilbert
,
R. G.
,
Luther
,
K.
, and
Troe
,
J.
,
1983
, “
Theory of Thermal Unimolecular Reactions in the Fall-Off Range. II Weak Collision Rate Constants
,”
Ber. Bunsenges. Phys. Chem.
,
87
(2), pp.
169
177
.
18.
Connelly
,
B. C.
,
Bennett
,
B. A. V.
,
Smooke
,
M. D.
, and
Long
,
M. B.
,
2009
, “
A Paradigm Shift in the Interaction of Experiments and Computations in Combustion Research
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
879
886
.
19.
Versailles
,
P.
,
2017
, “
CH formation in Premixed Flames of C1–C4 Alkanes: Assessment of Current Chemical Modelling Capab
ility Against Experiments,”
Ph.D. thesis
, McGill University, Montreal, QC, Canada.
20.
Reaction Design,
2013
, “
Chemkin-Pro Release 15131
,” Reaction Design, San Diego, CA.
21.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Stocker
,
D.
,
Troe
,
J.
,
Tsang
,
W.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
2005
, “
Evaluated Kinetic Data for Combustion Modeling: Supplement II
,”
J Phys. Chem. Ref. Data
,
34
(
3
), pp.
757
1397
.
22.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Esser
,
C.
,
Frank
,
P.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
1992
, “
Evaluated Kinetic Data for Combustion Modelling
,”
J. Phys. Chem. Ref. Data
,
21
(
3
), pp. 411–734.
23.
Tsang
,
W.
, and
Hampson
,
R. F.
,
1986
, “
Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds
,”
J. Phys. Chem. Ref. Data
,
15
(
3
), pp.
1087
1279
.
24.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2016
, “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.1,” Cantera Developers, accessed Nov. 21, 2017, http://www.cantera.org
25.
Zhou
,
C. W.
,
Li
,
Y.
,
O'Connor
,
E.
,
Somers
,
K. P.
,
Thion
,
S.
,
Keesee
,
C.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
DeVerter
,
T. A.
,
Oehlschlaeger
,
M. A.
,
Kukkadapu
,
G.
,
Sung
,
C. J.
,
Alrefae
,
M.
,
Khaled
,
F.
,
Farooq
,
A.
,
Dirrenberger
,
P.
,
Glaude
,
P. A.
,
Battin-Leclerc
,
F.
,
Santner
,
J.
,
Ju
,
Y.
,
Held
,
T.
,
Haas
,
F. M.
,
Dryer
,
F. L.
, and
Curran
,
H. J.
,
2016
, “
A Comprehensive Experimental and Modeling Study of Isobutene Oxidation
,”
Combust. Flame
,
167
, pp.
353
379
.
26.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
.
27.
Turányi
,
T.
,
Zalotai
,
L.
,
Dóbé
,
S.
, and
Bérces
,
T.
,
2002
, “
Effect of the Uncertainty of Kinetic and Thermodynamic Data on Methane Flame Simulation Results
,”
Phys. Chem. Chem. Phys.
,
4
(
12
), pp.
2568
2578
.
28.
Argonne, “Active Thermochemical Tables, Version 1.118,” Argonne National Laboratory, accessed Nov. 21, 2017, http://atct.anl.gov/
29.
Fomin
,
A.
,
Zavlev
,
T.
,
Alekseev
,
V. A.
,
Rahinov
,
I.
,
Cheskis
,
S.
, and
Konnov
,
A. A.
,
2016
, “
Experimental and Modelling Study of 1CH2 in Premixed Very Rich Methane Flames
,”
Combust. Flame
,
171
, pp.
198
210
.
30.
CRECK Modeling Group
,
2014
, “CRECK Kinetics Model (Version 1412),” The CRECK Modeling Group, Milano, Italy, http://creckmodeling.chem.polimi.it/index.php/menu-kinetics/menu-kinetics-detailed-mechanisms
31.
Gokulakrishnan
,
P.
,
Fuller
,
C. C.
,
Klassen
,
M. S.
,
Joklik
,
R. G.
,
Kochar
,
Y. N.
,
Vaden
,
S. N.
,
Lieuwen
,
T. C.
, and
Seitzman
,
J. M.
,
2014
, “
Experiments and Modeling of Propane Combustion With Vitiation
,”
Combust. Flame
,
161
(
8
), pp.
2038
2053
.
32.
Leung
,
K. M.
, and
Lindstedt
,
R. P.
,
1995
, “
Detailed Kinetic Modeling of C1–C3 Alkane Diffusion Flames
,”
Combust. Flame
,
102
(
94
), pp.
129
160
.
33.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Frank
,
P.
,
Hayman
,
G.
,
Just
,
T.
,
Kerr
,
J. A.
,
Murrells
,
T.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
1994
, “
Evaluated Kinetic Data for Combustion Modeling. Supplement I
,”
J. Phys. Chem. Ref. Data
,
23
(
6
), pp.
847
848
.
34.
Glarborg
,
P.
,
Miller
,
J. A.
, and
Kee
,
R. J.
,
1986
, “
Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-Stirred Reactors
,”
Combust. Flame
,
65
(2), pp.
177
202
.
35.
Jasper
,
A. W.
,
Klippenstein
,
S. J.
,
Harding
,
L. B.
, and
Ruscic
,
B.
,
2007
, “
Kinetics of the Reaction of Methyl Radical With Hydroxyl Radical and Methanol Decomposition
,”
J. Phys. Chem. A
,
111
(
10
), pp.
3932
3950
.
36.
Dombrowsky
,
C.
, and
Wagner
,
H. G.
,
1992
, “
Investigation of the 3CH2 + O2 Reaction in Shock Waves
,”
Ber. Bunsenges. Phys. Chem.
,
96
(
8
), pp.
1048
1055
.
37.
Lee
,
P. F.
,
Matsui
,
H.
,
Chen
,
W. Y.
, and
Wang
,
N. S.
,
2012
, “
Production of H and O(3P) Atoms in the Reaction of CH2 With O2
,”
J. Phys. Chem. A
,
116
(
37
), pp.
9245
9254
.
38.
Böhland
,
T.
,
Temps
,
F.
, and
Wagner
,
H. G.
,
1984
, “
Direct Determination of the Rate Constant for the Reaction CH2 + O2 With a LMR-Spectrometer
,”
Ber. Bunsenges. Phys. Chem.
,
88
(
5
), pp.
455
458
.
39.
Darwin
,
D. C.
,
Young
,
A. T.
,
Johnston
,
H. S.
, and
Moore
,
C. B.
,
1989
, “
Rate Constants for CH2(X̃3B1) Removal By O2, NO and C2H2 From Infrared Diode Laser Flash Kinetic Spectroscopy
,”
J. Phys. Chem.
,
93
(
3
), pp.
1074
1078
.
40.
Vinckier
,
C.
, and
Debruyn
,
W.
,
1979
, “
Temperature Dependence of the Reactions of Methylene With Oxygen Atoms, Oxygen, and Nitric Oxide
,”
J. Phys. Chem.
,
83
(
16
), pp.
2057
2062
.
41.
Dombrowsky
,
C.
,
Hwang
,
S. M.
,
Röhrig
,
M.
, and
Wagner
,
H. G.
,
1992
, “
The Formation of O and H Atoms in the Reaction of CH2 With O2 at High Temperatures
,”
Ber. Bunsenges. Phys. Chem.
,
96
(
2
), pp.
194
198
.
42.
Hidaka
,
Y.
,
Kimura
,
K.
,
Hattori
,
K.
, and
Okuno
,
T.
,
1996
, “
Shock Tube and Modeling Study of Ketene Oxidation
,”
Combust. Flame
,
106
(
1–2
), pp.
155
167
.
You do not currently have access to this content.