Abstract

Nonintrusive polynomial chaos expansion (NIPCE) is used to quantify the impact of uncertainties in operating conditions on the flame transfer function (FTF) of a premixed laminar flame. NIPCE requires only a small number of system evaluations, so it can be applied in cases where a Monte Carlo simulation is unfeasible. We consider three uncertain operating parameters: inlet velocity, burner plate temperature, and equivalence ratio. The FTF is identified in terms of the finite impulse response (FIR) from computational fluid dynamics (CFD) simulations with broadband velocity excitation. NIPCE yields uncertainties in the FTF due to the uncertain operating conditions. For the chosen uncertain operating bounds, a second-order expansion is found to be sufficient to represent the resulting uncertainties in the FTF with good accuracy. The effect of each operating parameter on the FTF is studied using Sobol indices, i.e., a variance-based measure of sensitivity, which are computed from the NIPCE. It is observed that in the present case, uncertainties in the FIR as well as in the phase of the FTF are dominated by the equivalence-ratio uncertainty. For frequencies below 150 Hz, the uncertainty in the gain of the FTF is also attributable to the uncertainty in equivalence-ratio, but for higher frequencies, the uncertainties in velocity and temperature dominate. At last, we adopt the polynomial approximation of the output quantity, provided by the NIPCE method, for further uncertainty quantification (UQ) studies with modified input uncertainties.

References

1.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2001
, “
Thermoacoustic Oscillations in an Annular Combustor
,”
ASME
Paper No. 2001-GT-0037.
2.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
3.
Emmert
,
T.
,
Jaensch
,
S.
,
Sovardi
,
C.
, and
Polifke
,
W.
,
2014
, “
taX—A Flexible Tool for Low-Order Duct Acoustic Simulation in Time and Frequency Domain
,”
Seventh Forum Acusticum
, Kraków, Poland, Sept. 7–12.https://www.researchgate.net/publication/321133671_taX_-_a_Flexible_Tool_for_Low-Order_Duct_Acoustic_Simulation_in_Time_and_Frequency_Domain
4.
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Time Domain Simulations of Nonlinear Thermoacoustic Behaviour in a Simple Combustor Using a Wave-Based Approach
,”
J. Sound Vib.
,
346
, pp.
345
360
.
5.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. Acust.
,
102
(
5
), pp.
824
833
.
6.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Transfer Function of a Premixed Laminar Flame
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
765
773
.
7.
Kunze
,
K.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2004
, “
Transfer Function Measurements on a Swirl Stabilized Premix Burner in an Annular Combustion Chamber
,”
ASME
Paper No. GT2004-53106.
8.
Kim
,
K. T.
,
Lee
,
H. J.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D.
,
2009
, “
Flame Transfer Function Measurement and Instability Frequency Prediction Using a Thermoacoustic Model
,”
ASME
Paper No. GT2009-60026.
9.
Bohn
,
D.
,
Deutsch
,
G.
, and
Krüger
,
U.
,
1998
, “
Numerical Prediction of the Dynamic Behaviour of Turbulent Diffusion Flames
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
713
720
.
10.
Gentemann
,
A. M. G.
,
Hirsch
,
C.
,
Kunze
,
K.
,
Kiesewetter
,
F.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2004
, “
Validation of Flame Transfer Function Reconstruction for Perfectly Premixed Swirl Flames
,”
ASME
Paper No. GT-2004-53776.
11.
Zhu
,
M.
,
Dowling
,
A. P.
, and
Bray
,
K. N. C.
,
2005
, “
Transfer Function Calculations for Aeroengine Combustion Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
18
26
.
12.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.
13.
Avdonin
,
A.
,
Jaensch
,
S.
,
Silva
,
C. F.
,
Češnovar
,
M.
, and
Polifke
,
W.
,
2018
, “
Uncertainty Quantification and Sensitivity Analysis of Thermoacoustic Stability With Non-Intrusive Polynomial Chaos Expansion
,”
Combust. Flame
,
189
, pp.
300
310
.
14.
Crocco
,
L.
,
1951
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors—Part1: Fundamentals. Low Frequency Instability With Monopropellants
,”
J. Am. Rocket Soc.
,
21
(
6
), pp.
163
178
.
15.
Crocco
,
L.
,
1952
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors—Part 2: Low Frequency Instability With Bipropellants. High Frequency Instability
,”
J. Am. Rocket Soc.
,
22
(
1
), pp.
7
16
.
16.
Subramanian
,
P.
,
Blumenthal
,
R. S.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2015
, “
Distributed Time Lag Response Functions for the Modelling of Combustion Dynamics
,”
Combust. Theory Modell.
,
19
(
2
), pp.
223
237
.
17.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67
, pp.
109
128
.
18.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.
19.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.
20.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.
21.
Gopinathan
,
S. M.
,
Iurashev
,
D.
,
Bigongiari
,
A.
, and
Heckl
,
M.
,
2017
, “
Nonlinear Analytical Flame Models With Amplitude-Dependent Time-Lag Distributions
,”
Int. J. Spray Combust. Dyn.
(epub).
22.
Andrianov
,
G.
,
Burriel
,
S.
,
Cambier
,
S.
,
Dutfoy
,
A.
,
Dutka-Malen
,
I.
,
de Rocquigny
,
E.
,
Sudret
,
B.
,
Benjamin
,
P.
,
Lebrun
,
R.
,
Mangeant
,
F.
, and
Pendola
,
M.
,
2007
, “
Open TURNS, an Open Source Initiative to Treat Uncertainties, Risks'N Statistics in a Structured Industrial Approach
,”
European Safety and Reliability Conference, Risk
, Reliability and Societal Safety (ESREL), Stavenger, Norway, June 25–27, pp. 1–7.
23.
Adams
,
B. M.
,
Bohnhoff
,
W.
,
Dalbey
,
K.
,
Eddy
,
J.
,
Eldred
,
M.
,
Gay
,
D.
,
Haskell
,
K.
,
Hough
,
P. D.
, and
Swiler
,
L.
,
2009
, “
DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User's Manual
,” Sandia National Laboratories, Livermore, CA, Technical Report No. SAND2010-2183.
24.
Feinberg
,
J.
, and
Langtangen
,
H. P.
,
2015
, “
Chaospy: An Open Source Tool for Designing Methods of Uncertainty Quantification
,”
J. Comput. Sci.
,
11
(
Suppl. C
), pp.
46
57
.
25.
Rodrigues
,
O.
,
1816
, “
De L'attraction Des Sphéroïdes
,”
Corresp. Sur. Éc. Imp. Polytech.
,
3
(
3
), pp.
361
385
.
26.
Sobol'
,
I.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Model. Comput. Exp.
,
1
(4), pp.
407
414
.http://max2.ese.u-psud.fr/epc/conservation/MODE/Sobol%20Original%20Paper.pdf
27.
Cannavó
,
F.
,
2012
, “
Sensitivity Analysis for Volcanic Source Modeling Quality Assessment and Model Selection
,”
Comput. Geosci.
,
44
(
Suppl. C
), pp.
52
59
.
28.
Kornilov
,
V. N.
,
Rook
,
R.
,
ten Thije Boonkkamp
,
J. H. M.
, and
de Goey
,
L. P. H.
,
2009
, “
Experimental and Numerical Investigation of the Acoustic Response of Multi-Slit Bunsen Burners
,”
Combust. Flame
,
156
(
10
), pp.
1957
1970
.
29.
Duchaine
,
F.
,
Boudy
,
F.
,
Durox
,
D.
, and
Poinsot
,
T.
,
2011
, “
Sensitivity Analysis of Transfer Functions of Laminar Flames
,”
Combust. Flame
,
158
(
12
), pp.
2384
2394
.
30.
Silva
,
C. F.
,
Emmert
,
T.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2015
, “
Numerical Study on Intrinsic Thermoacoustic Instability of a Laminar Premixed Flame
,”
Combust. Flame
,
162
(
9
), pp.
3370
3378
.
31.
Jaensch
,
S.
,
Merk
,
M.
,
Gopalakrishnan
,
E.
,
Bomberg
,
S.
,
Emmert
,
T.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2017
, “
Hybrid CFD/Low-Order Modeling of Nonlinear Thermoacoustic Oscillations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3827
3834
.
32.
Blumenthal
,
R. S.
,
Subramanian
,
P.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2013
, “
Novel Perspectives on the Dynamics of Premixed Flames
,”
Combust. Flame
,
160
(
7
), pp.
1215
1224
.
33.
Guo
,
S.
,
Silva
,
C. F.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2018
, “
Quantification and Propagation of Uncertainties in Identification of Flame Impulse Response for Thermoacoustic Stability Analysis
,”
ASME
Paper No. GT2018-75644.
34.
Ndiaye
,
A.
,
Bauerheim
,
M.
, and
Nicoud
,
F.
,
2015
, “
Uncertainty Quantification of Thermoacoustic Instabilities on a Swirled Stabilized Combustor
,”
ASME
Paper No. GT2015-44133.
35.
Bauerheim
,
M.
,
Ndiaye
,
A.
,
Constantine
,
P.
,
Moreau
,
S.
, and
Nicoud
,
F.
,
2016
, “
Symmetry Breaking of Azimuthal Thermoacoustic Modes: The UQ Perspective
,”
J. Fluid Mech.
,
789
, pp.
534
566
.
36.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part II: Uncertainty Quantification
,”
J. Comput. Phys.
,
325
, pp.
411
421
.
37.
Silva
,
C.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2017
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.
38.
Mensah
,
G. A.
,
Magri
,
L.
, and
Moeck
,
J. P.
,
2017
, “
Methods for the Calculation of Thermoacoustic Stability Margins and Monte Carlo-Free Uncertainty Quantification
,”
ASME
Paper No. GT2017-64829.
You do not currently have access to this content.