Erosion issues usually affect fans used for the extraction of exhaust gas in power plants. Because of the presence of fly ash within the exhaust flow, fan blades are subjected to material wear at the leading edge, trailing edge, and blade surface, and this may cause a modification of the blade aerodynamic profile, a reduction of blade chord and effective camber. All these effects result in a deterioration of the aerodynamic performance of the blade. Prediction of erosion process in industrial applications helps to better schedule the maintenance and predict the blade life. However, since usually numerical simulations of erosion process do not account for the change in target geometry, and then the variation in time of the erosion process itself, they can be only used to study a very short part (namely the beginning) of the whole process. To this aim, we report a numerical simulation of the blade aging process due to particle erosion in an induced draft fan. This is done using in-house numerical tools able to iteratively simulate the flow field, compute the particle tracking/dispersion/erosion, and modify the geometry (and mesh) according to the predicted erosion rate. First, we study the effect of the geometry damage due to erosion, for a generic particle flow and a given expected maximum damage. In the second part of the computation, a scale factor is introduced to align the simulation time and particle concentrations to a real application, comparing the results with the on-field observation.

References

1.
Vassilev
,
S. V.
,
Kitano
,
K.
,
Takeda
,
S.
, and
Tsurue
,
T.
,
1995
, “
Influence of Mineral and Chemical Composition of Coal Ashes on Their Fusibility
,”
Fuel Process. Technol.
,
45
(
1
), pp.
27
51
.
2.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J.
,
Gledhill
,
A.
, and
Padture
,
N.
,
2012
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(
2
), p.
021033
.
3.
Vassilev
,
S. V.
, and
Vassileva
,
C. G.
,
2007
, “
A New Approach for the Classification of Coal Fly Ashes Based on Their Origin, Composition, Properties, and Behaviour
,”
Fuel
,
86
(
10–11
), pp.
1490
1512
.
4.
Atkin
,
M. L.
, and
Duke
,
G. A.
,
1971
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Particles
,” Aeronautical Research Laboratory Department of Supply, Australian Defense Scientific Service, Report No. 133.
5.
Kurz
,
R.
, and
Brun
,
K.
,
2001
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.
6.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propulsion Power
,
22
(
2
), pp.
350
360
.
7.
Balan
,
C.
, and
Tabakoff
,
W.
,
1984
, “
Axial Flow Compressor Performance Deterioration
,”
AIAA
Paper No. 1984-1208.
8.
Sallee
,
G. P.
,
Kruckenberg
,
H. D.
, and
Toomey
,
E. H.
,
1975
, “
Analysis of Turbofan Engine Performance Deterioration and Proposed Follow-on Tests
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA CR-134769
.https://ntrs.nasa.gov/search.jsp?R=19750018937
9.
Ghenaiet
,
A.
,
Tan
,
S.
, and
Elder
,
R.
,
2004
, “
Experimental Investigation of Axial Fan Erosion and Performance Degradation
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
218
(
6
), pp.
437
450
.
10.
Ghenaiet
,
A.
,
2005
, “
Numerical Simulations of Flow and Particle Dynamics Within a Centrifugal Turbomachine
,”
Compressors Their Syst.
,
218
, pp.
1191
1202
.
11.
Sugano
,
H.
,
Yamaguchi
,
N.
, and
Taguchi
,
S.
,
1982
, “
A Study on the Ash Erosion of Axial Induced Draft Fans of Coal-Fired Boilers
,” TR19, Mitsubishi Heavy Industries, Tokyo, Japan.
12.
Hussein
,
M. F.
, and
Tabakoff
,
W.
,
1974
, “
Computation and Plotting of Solid Particle Flow in Rotating Cascades
,”
Comput. Fluids
,
2
(
1
), pp.
1
15
.
13.
Elfeki
,
S.
, and
Tabakoff
,
W.
,
1987
, “
Erosion Study of Radial Flow Compressor With Splitters
,”
ASME J. Turbomach.
,
109
(
1
), pp.
62
69
.
14.
Ghenaiet
,
A.
,
2009
, “
Numerical Study of Sand Ingestion Through a Ventilating System
,”
World Congress on Engineering
, London, July 1–3, pp.
1
3
.
15.
Suzuki
,
M.
,
Inaba
,
K.
, and
Yamamoto
,
M.
,
2008
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
J. Therm. Sci.
,
17
(
2
), p.
125
.
16.
El-Behery
,
S. M.
,
Hamed
,
M. H.
,
Ibrahim
,
K.
, and
El-Kadi
,
M.
,
2010
, “
CFD Evaluation of Solid Particles Erosion in Curved Ducts
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071303
.
17.
Suzuki
,
M.
, and
Yamamoto
,
M.
,
2011
, “
Numerical Simulation of Sand Erosion Phenomena in a Single-Stage Axial Compressor
,”
J. Fluid Sci. Technol.
,
6
(
1
), pp.
98
113
.
18.
Cardillo
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
,
Rispoli
,
F.
,
Sheard
,
A. G.
, and
Venturini
,
P.
,
2014
, “
Simulation of Particle-Laden Flows in a Large Centrifugal Fan for Erosion Prediction
,”
ASME
Paper No. GT2014-25865.
19.
Corsini
,
A.
,
Marchegiani
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
, and
Sheard
,
A. G.
,
2012
, “
Predicting Blade Leading Edge Erosion in an Axial Induced Draft Fan
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042601
.
20.
Corsini
,
A.
,
Castorrini
,
A.
,
Morei
,
E.
,
Rispoli
,
F.
,
Sciulli
,
F.
, and
Venturini
,
P.
,
2015
, “
Modeling of Rain Drop Erosion in a Multi-Mw Wind Turbine
,”
ASME
Paper No. GT2015-42174.
21.
Borello
,
D.
,
Anielli
,
D.
,
Rispoli
,
F.
,
Salvagni
,
A.
, and
Venturini
,
P.
,
2015
, “
Unsteady CFD Analysis of Erosion Mechanism in the Coolant Channels of a Rotating Gas Turbine Blade
,”
ASME
Paper No. GT2015-43266.
22.
Borello
,
D.
,
Cardillo
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
,
Rispoli
,
F.
,
Salvagni
,
A.
,
Sheard
,
A.
, and
Venturini
,
P.
,
2016
, “
Modelling of Particle Transport, Erosion and Deposition in Power Plant Gas Paths
,”
ASME
Paper No. GT2016-57984.
23.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2016
, “
SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades
,”
Advances in Computational Fluid-Structure Interaction and Flow Simulation
,
Springer
, Cham, Switzerland, pp.
77
96
.
24.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2016
, “
Computational Analysis of Wind-Turbine Blade Rain Erosion
,”
Comput. Fluids
,
141
, pp.
175
183
.
25.
Castorrini
,
A.
,
Corsini
,
A.
,
Morabito
,
F.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2017
, “
Numerical Simulation With Adaptive Boundary Method for Predicting Time Evolution of Erosion Processes
,”
ASME
Paper No. GT2017-64675.
26.
Casaday
,
B. P.
,
2013
, “
Investigation of Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane
,”
Ph.D. thesis
, The Ohio State University, Columbus, OH.http://adsabs.harvard.edu/abs/2013PhDT.......428C
27.
Corsini
,
A.
,
Rispoli
,
F.
,
Sheard
,
A. G.
, and
Venturini
,
P.
,
2013
, “
Numerical Simulation of Coal Fly-Ash Erosion in an Induced Draft Fan
,”
ASME J. Fluids Eng.
,
135
(
8
), p.
081303
.
28.
Borello
,
D.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2003
, “
A Finite Element Overlapping Scheme for Turbomachinery Flows on Parallel Platforms
,”
Comput. Fluids
,
32
(
7
), pp.
1017
1047
.
29.
Kirk
,
B. S.
,
Peterson
,
J. W.
,
Stogner
,
R. H.
, and
Carey
,
G. F.
,
2006
, “
Libmesh: A c++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
Eng. Comput.
,
22
(
3–4
), pp.
237
254
.
30.
Corsini
,
A.
, and
Rispoli
,
F.
,
2005
, “
Flow Analyses in a High-Pressure Axial Ventilation Fan With a Non-Linear Eddy-Viscosity Closure
,”
Int. J. Heat Fluid Flow
,
26
(
3
), pp.
349
361
.
31.
Baxter
,
L.
,
1989
, “
Turbulent Transport of Particles
,” Ph.D. thesis, Brigham Young University, Provo, UT.
32.
Wang
,
L.-P.
, and
Stock
,
D. E.
,
1993
, “
Dispersion of Heavy Particles by Turbulent Motion
,”
J. Atmos. Sci.
,
50
(
13
), pp.
1897
1913
.
33.
Litchford
,
R. J.
, and
Jeng
,
S.-M.
,
1991
, “
Efficient Statistical Transport Model for Turbulent Particle Dispersion in Sprays
,”
AIAA J.
,
29
(
9
), pp.
1443
1451
.
34.
Baxter
,
L.
, and
Smith
,
P.
,
1993
, “
Turbulent Dispersion of Particles: The Stp Model
,”
Energy Fuels
,
7
(
6
), pp.
852
859
.
35.
Jain
,
S.
,
1995
, “
Three-Dimensional Simulation of Turbulent Particle Dispersion
,” Ph. D. thesis, University of Utah, Salt Lake City, UT.
36.
Kær
,
S.
,
2001
, “
Numerical Investigation of Ash Deposition in Straw-Fired Furnaces
,” Doctoral thesis, Aalborg University, Aalborg, Denmark.
37.
Kleis
,
I.
, and
Kulu
,
P.
,
2007
,
Solid Particle Erosion: Occurrence, Prediction and Control
,
Springer Science & Business Media
, Berlin.
38.
Oka
,
Y.
,
Ohnogi
,
H.
,
Hosokawa
,
T.
, and
Matsumura
,
M.
,
1997
, “
The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
203
, pp.
573
579
.
39.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.
40.
Hutchings
,
I.
, and
Winter
,
R.
,
1974
, “
Particle Erosion of Ductile Metals: A Mechanism of Material Removal
,”
Wear
,
27
(
1
), pp.
121
128
.
41.
Tabakoff
,
W.
,
Kotwal
,
R.
, and
Hamed
,
A.
,
1979
, “
Erosion Study of Different Materials Affected by Coal Ash Particles
,”
Wear
,
52
(
1
), pp.
161
173
.
42.
Tezduyar
,
T. E.
,
Behr
,
M.
,
Mittal
,
S.
, and
Johnson
,
A.
,
1992
, “
Computation of Unsteady Incompressible Flows With the Stabilized Finite Element Methods: Space-Time Formulations, Iterative Strategies and Massively Parallel Implementations
,” ASME PVP,
246
, pp.
7
24
.
43.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
, and
Mittal
,
S.
,
1993
, “
Parallel Finite-Element Computation of 3D Flows
,”
Comput.
,
26
(
10
), pp.
27
36
.
44.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
,
1994
, “
Mesh Update Strategies in Parallel Finite Element Computations of Flow Problems With Moving Boundaries and Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
119
(
1–2
), pp.
73
94
.
45.
Corsini
,
A.
,
Rispoli
,
F.
, and
Tezduyar
,
T.
,
2011
, “
Stabilized Finite Element Computation of Nox Emission in Aero-Engine Combustors
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
254
270
.
46.
Castorrini
,
A.
,
Corsini
,
A.
,
Sheard
,
A.
, and
Rispoli
,
F.
,
2016
, “
Numerical Study on the Passive Control of the Aeroelastic Response in Large Axial Fans
,”
ASME
Paper No. GT2016-57306.
47.
Pandian
,
N.
,
2013
, “
Fly Ash Characterization With Reference to Geotechnical Applications
,”
J. Indian Inst. Sci.
,
84
(
6
), p.
189
.https://core.ac.uk/download/pdf/11603662.pdf
48.
Seggiani
,
M.
,
Bardi
,
A.
, and
Vitolo
,
S.
,
2000
, “
Prediction of Fly-Ash Size Distribution: A Correlation Between the Char Transition Radius and Coal Properties
,”
Fuel
,
79
(
8
), pp.
999
1002
.
You do not currently have access to this content.