In high-pressure turbines, cool air is purged through rim seals at the periphery of wheel-spaces between the stator and rotor disks. The purge suppresses the ingress of hot gas from the annulus but superfluous use is inefficient. In this paper, the interaction between the ingress, purge, and mainstream flow is studied through comparisons of newly acquired experimental results alongside unsteady numerical simulations based on the DLR TRACE solver. New experimental measurements were taken from a one-and-a-half stage axial-turbine rig operating with engine-representative blade and vane geometries, and overlapping rim seals. Radial traverses using a miniature CO2 concentration probe quantified the penetration of ingress into the rim seal and the outer portion of the wheel-space. Unsteady pressure measurements from circumferentially positioned transducers on the stator disk identified distinct frequencies in the wheel-space, and the computations reveal these are associated with large-scale flow structures near the outer periphery rotating at just less than the disk speed. It is hypothesized that the physical origin of such phenomenon is driven by Kelvin–Helmholtz instabilities caused by the tangential shear between the annulus and egress flows, as also postulated by previous authors. The presence and intensity of these rotating structures are strongly dependent on the purge flow rate. While there is general qualitative agreement between experiment and computation, it is speculated that the underprediction by the computations of the measured levels of ingress is caused by deficiencies in the turbulence modeling.

References

1.
Diakunchak
,
I.
,
Kiesow
,
H. J.
, and
McQuiggan
,
G.
,
2008
, “
The History of the Siemens Gas Turbine
,”
ASME
Paper No. GT2008-50507.
2.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
3.
Bohn
,
D.
,
Rudzlnskl
,
B.
,
Surken
,
N.
, and
Gartner
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 2000-GT-284.
4.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
5.
Laskowski
,
G. M.
,
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Ledezma
,
G.
,
Kapetanovic
,
S.
,
Itzel
,
G. M.
,
Sullivan
,
M. A.
, and
Farrell
,
T. R.
,
2011
, “
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part II: CFD Simulations
,”
ASME J. Turbomach.
,
133
(
4
), p.
041020
.
6.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
7.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.
8.
Boudet
,
J.
,
Autef
,
V.
,
Chew
,
J.
,
Hills
,
N.
, and
Gentilhomme
,
O.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
(
1098
), pp.
373
383
.
9.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2006
, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disc Cavities
,”
ASME
Paper No. GT2006-90307.
10.
Julien
,
S.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Boutet-Blais
,
G.
,
Lapointe
,
S.
,
Caron
,
J.-F.
, and
Marini
,
R.
,
2010
, “
Simulations of Flow Ingestion and Related Structures in a Turbine Disk Cavity
,”
ASME
Paper No. GT2010-22729.
11.
Boutet-Blais
,
G.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Julien
,
S.
,
Harvey
,
J.-F.
,
Marini
,
R.
, and
Caron
,
J.-F.
,
2011
, “
Passive Tracer Validity for Cooling Effectiveness Through Flow Computation in a Turbine Rim Seal Environment
,”
ASME
Paper No. GT2011-45654.
12.
Feiereisen
,
J.
,
Paolillo
,
R.
, and
Wagner
,
J.
,
2000
, “
UTRC Turbine Rim Seal Ingestion and Platform Cooling Experiments
,”
AIAA
Paper No. AIAA-2000-3371.
13.
Rabs
,
M.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME
Paper No. GT2009-59965.
14.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.
15.
O’Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2011
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
J. Mech. Eng. Sci.
,
225
(
12
), pp.
2881
2891
.
16.
O’Mahoney
,
T.
,
Hills
,
N.
, and
Chew
,
J.
,
2012
, “
Sensitivity of LES Results From Turbine Rim Seals to Changes in Grid Resolution and Sector Size
,”
Prog. Aerosp. Sci.
,
52
, pp.
48
55
.
17.
Wang
,
C.-Z.
,
Mathiyalagan
,
S.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2014
, “
Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
,”
ASME J. Turbomach.
,
136
(
3
), p.
031007
.
18.
Mirzamoghadam
,
A. V.
,
Kanjiyani
,
S.
,
Riahi
,
A.
,
Vishnumolakala
,
R.
, and
Gundeti
,
L.
,
2014
, “
Unsteady 360 Computational Fluid Dynamics Validation of a Turbine Stage Mainstream/Disk Cavity Interaction
,”
ASME J. Turbomach.
,
137
(
1
), p.
011008
.
19.
Town
,
J.
,
Averbach
,
M.
, and
Camci
,
C.
,
2016
, “
Experimental and Numerical Investigation of Unsteady Structures Within the Rim Seal Cavity in the Presence of Purge Mass Flow
,”
ASME
Paper No. GT2016-56500.
20.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometries
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.
21.
Savov
,
S. S.
, and
Atkins
,
N. R.
,
2017
, “
A Rim Seal Ingress Model Based on Turbulent Transport
,”
ASME
Paper No. GT2017-63531.
22.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Little
,
D.
, and
Montgomery
,
M.
,
2016
, “
Effect of Purge Flow Swirl on Hot-Gas Ingestion Into Turbine Rim Cavities
,”
J. Propul. Power
,
32
(
5
), pp.
1055
1066
.
23.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.
24.
Gao
,
F.
,
Chew
,
J.
,
Beard
,
P. F.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2017
, “
Numerical Studies of Turbine Rim Sealing Flows on a Chute Seal Configuration
,”
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Stockholm, Sweden, Apr. 3–7, Paper No. ETC2017-284.http://epubs.surrey.ac.uk/813729/1/ETC_Template_v3.pdf
25.
Schadler
,
R.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Schmid
,
G.
, and
Voelker
,
S.
,
2017
, “
Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
,”
ASME J. Turbomach.
,
139
(
1
), p.
011011
.
26.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Measurements and Modeling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012603
.
27.
Scobie
,
J. A.
,
Hualca
,
F. P.
,
Patinios
,
M.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2017
, “
Re-Ingestion of Upstream Egress in a 1.5-Stage Gas Turbine Rig
,”
ASME
Paper No. GT2017-64620.
28.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems, Volume 1—Rotor Stator Systems
,
Research Studies Press
, Taunton,
UK
.
29.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals. Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
30.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
31.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2017
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor-Stator Cavity
,”
ASME
Paper No. GT2017-63910.
You do not currently have access to this content.