Detailed information of the thermodynamic parameters, system performance, and operating behavior of aircraft auxiliary power units (APU) cycles is rarely available in literature. In order to set up numeric models and study cycle modifications, validation data with well-defined boundary conditions is needed. Thus, the paper introduces an APU test rig based on a Garrett GTCP36-28 with detailed instrumentation, which will be used in a further step as a demonstration platform for cycle modifications. The system is characterized in the complete feasible operating range by alternating bleed air load and electric power output. Furthermore, simulations of a validated numerical cycle model are utilized to predict the load points in the operating region which were unstable during measurements. The paper reports and discusses turbine shaft speed, compressor air mass flow, fuel mass flow, efficiencies, compressor outlet pressure and temperature, turbine inlet and outlet temperature as well as exhaust gas emissions. Furthermore, the results are discussed with respect to the difference compared to a Hamilton Sundstrand APS3200. Though the efficiencies of the GTCP36-28 are lower compared to the APS3200, the general behavior is in good agreement. In particular, the effects of separate compressors for load and power section are discussed in contrast to the GTCP36-28 system design comprising a single compressor. In general, it was shown that the GTCP36-28 is still appropriate for the utilization as a demonstration platform for cycle modification studies.

References

1.
Gorinevsky
,
D.
,
Dittmar
,
K.
,
Mylaraswamy
,
D.
, and
Nwadiogbu
,
E.
,
2002
, “
Model-Based Diagnostics for an Aircraft Auxiliary Power Unit
,”
International Conference on Control Applications
, Glasgow, UK, Sept. 18–20, pp.
215
220
.
2.
Fleuti
,
E.
, and
Hofmann
,
P.
,
2005
, “
Aircraft APU Emissions at Zurich Airport
,” Technical Report, Unique Flughafen Zürich, Zurich, Switzerland.
3.
Roboam
,
X.
,
Sareni
,
B.
, and
Andrade
,
A. D.
,
2012
, “
More Electricity in the Air: Toward Optimized Electrical Networks Embedded in More-Electrical Aircraft
,”
IEEE Ind. Electron. Mag.
,
6
(
4
), pp.
6
17
.
4.
Kinsey
,
J. S.
,
Timko
,
M. T.
,
Herndon
,
S. C.
,
Wood
,
E. C.
,
Yu
,
Z.
,
Miake-Lye
,
R. C.
,
Lobo
,
P.
,
Whitefield
,
P.
,
Hagen
,
D.
,
Wey
,
C.
,
Anderson
,
B. E.
,
Beyersdorf
,
A. J.
,
Hudgins
,
C. H.
,
Thornhill
,
K. L.
,
Winstead
,
E.
,
Howard
,
R.
,
Bulzan
,
D. I.
,
Tacina
,
K. B.
, and
Knighton
,
W. B.
,
2012
, “
Determination of the Emissions From an Aircraft Auxiliary Power Unit (APU) During the Alternative Aviation Fuel Experiment (AAFEX)
,”
J. Air Waste Manage. Assoc.
,
62
(
4
), pp.
420
430
.
5.
Ruslan
,
M.
,
Ahmed
,
I.
, and
Khandelwal
,
B.
,
2016
, “
Evaluating Effects of Fuel Properties on Smoke Emissions
,”
ASME
Paper No. GT2016-56791.
6.
Lobo
,
P.
,
Christie
,
S.
,
Khandelwal
,
B.
,
Blakey
,
S. G.
, and
Raper
,
D. W.
,
2015
, “
Evaluation of Non-Volatile Particulate Matter Emission Characteristics of an Aircraft Auxiliary Power Unit With Varying Alternative Jet Fuel Blend Ratios
,”
Energy
,
29
(
11
), pp.
7705
7711
.
7.
Stohlgren
,
L.
, and
Werner
,
L. D.
,
1986
, “
The GTCP36-300, a Gas Turbine Auxiliary Power Unit for Advanced Technology Transport Aircraft
,”
ASME
Paper No. 86-GT-285.
8.
Siebel
,
T.
,
Zanger
,
J.
,
Huber
,
A.
,
Aigner
,
M.
,
Knobloch
,
K.
, and
Bake
,
F.
,
2018
, “
Experimental Investigation of Cycle Properties, Noise, and Air Pollutant Emissions of an APS3200 Auxiliary Power Unit
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), pp.
1
9
.
9.
Knobloch
,
K.
,
Enghardt
,
L.
, and
Bake
,
F.
,
2018
, “
APU-Noise Reduction by Novel Muffler Concepts
,”
ASME
Paper No. GT2018-76762.
10.
Hasemann
,
S.
,
Huber
,
A.
,
Naumann
,
C.
, and
Aigner
,
M.
,
2017
, “
Investigation of a FLOX-Based Combustor for a Micro Gas Turbine With Exhaust Gas Recirculation
,”
ASME
Paper No. GT2017-64396.
11.
Panne
,
T.
,
Widenhorn
,
A.
,
Boyde
,
J.
,
Matha
,
D.
,
Abel
,
V.
, and
Aigner
,
M.
,
2007
, “
Thermodynamic Process Analyses of SOFC/GT Hybrid Systems
,”
AIAA
Paper No. 2007-4833.
12.
Henke
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2013
, “
Inverted Brayton Cycle With Exhaust Gas Recirculation—A Numerical Investigation
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), pp.
1
7
.
13.
Henke
,
M.
,
Klempp
,
N.
,
Hohloch
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Validation of a T100 Micro Gas Turbine Steady-State Simulation Tool
,”
ASME
Paper No. GT2015-42090.
14.
Krummrein
,
T.
,
Henke
,
M.
, and
Kutne
,
P.
,
2018
, “
A Highly Flexible Approach on the Steady-State Analysis of Innovative Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2018-75664.
15.
Payri
,
F.
,
Serrano
,
J.
,
Fajardo
,
P.
,
Reyes-Belmonte
,
M.
, and
Gozalbo-Belles
,
R.
,
2012
, “
A Physically Based Methodology to Extrapolate Performance Maps of Radial Turbines
,”
Energy Convers. Manage.
,
55
, pp.
149
163
.
16.
ICAO
,
2011
, “
Airport Air Quality Manual—Doc 9889
,” International Civil Aviation Organization, Montreal, QC, Canada,
Technical Report
https://www.icao.int/publications/Documents/9889_cons_en.pdf.
17.
Schürmann
,
G.
,
Schäfer
,
K.
,
Jahn
,
C.
,
Hoffmann
,
H.
,
Bauerfeind
,
M.
,
Fleuti
,
E.
, and
Rappenglück
,
B.
,
2007
, “
The Impact of NOx, CO and VOC Emissions on the Air Quality of Zurich Airport
,”
Atmos. Environ.
,
41
(
1
), pp.
103
118
.
18.
BMU
,
2002
, “
TA-Luft: Erste Allgemeine Verwaltungsvorschrift Zum Bundesimmissionsschutzgesetz
,” Bundesministerium für Umwelt.
19.
Joos
,
F.
,
2006
,
Technische Verbrennung—Verbrennungstechnik, Verbrennungsmodellierung, Emissionen
,
Springer-Verlag
,
Berlin
.
20.
Zanger
,
J.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Experimental Investigation of the Combustion Characteristics of a Double-Staged FLOX-Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig
,”
ASME
Paper No. GT2015-42313.
21.
Chen
,
J.
,
Mitchell
,
M. G.
, and
Nourse
,
J. G.
,
2010
, “
Development of Ultra-Low Emission Diesel Fuel-Fired Microturbine Engines for Vehicular Heavy Duty Applications-Combustion Modifications
,”
ASME
Paper No. GT2010-23181.
22.
Gounder
,
J.
,
Zizin
,
A.
,
Lammel
,
O.
, and
Aigner
,
M.
,
2016
, “
Spray Characteristics Measured in a New FLOX Based Low Emission Combustor for Liquid Fuels Using Laser and Optical Diagnostics
,”
ASME
Paper No. GT2016-56629.
You do not currently have access to this content.