Exhaust gas recirculation (EGR) is one of the most promising methods of improving the performance of power-generating gas turbines. CO2 is known to have the largest impact on flame behavior of any major exhaust species, but few studies have specified its thermal, kinetic, and transport effects on turbulent flames. Therefore, in this study, methane/air mixtures diluted with CO2 are experimentally investigated in a reactor-assisted turbulent slot (RATS) burner using OH planar laser-induced fluorescence (PLIF) measurements. CO2 addition is tested under both constant adiabatic flame temperature and variable adiabatic flame temperature conditions in order to elucidate its thermal, kinetic, and transport effects. Particular attention is paid to CO2's effects on the flame surface density, progress variable, turbulent burning velocity, and flame wrinkling. The experimental measurements reveal that CO2's thermal effects are the dominant factor in elongating the turbulent flame brush and decreasing the turbulent burning velocity. When thermal effects are removed by holding the adiabatic flame temperature constant, CO2's kinetic effects are the next most important factor, producing an approximately 5% decrease in the global consumption speed for each 5% of CO2 addition. The transport effects of CO2, however, tend to increase the global consumption speed, counteracting 30–50% of the kinetic effects when the adiabatic flame temperature is fixed. It is also seen that CO2 addition increases the normalized global consumption speed primarily through an enhancement of the stretch factor.

References

1.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
,
2009
, “
Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
0345051
.
2.
Evulet
,
A. T.
,
ElKady
,
A. M.
,
Brand
,
A. R.
, and
Chinn
,
D.
,
2009
, “
On the Performance and Operability of GE's Dry Low NOx Combustors Utilizing Exhaust Gas Recirculation for PostCombustion Carbon Capture
,”
Energy Procedia
,
1
(
1
), pp.
3809
3816
.
3.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
.
4.
Derudi
,
M.
, and
Rota
,
R.
,
2011
, “
Experimental Study of the Mild Combustion of Liquid Hydrocarbons
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3325
3332
.
5.
Abtahizadeh
,
E.
,
Sepman
,
A.
,
Hernández-Pérez
,
F.
,
van Oijen
,
J.
,
Mokhov
,
A.
,
de Goey
,
P.
, and
Levinsky
,
H.
,
2013
, “
Numerical and Experimental Investigations on the Influence of Preheating and Dilution on Transition of Laminar Coflow Diffusion Flames to Mild Combustion Regime
,”
Combust. Flame
,
160
(
11
), pp.
2359
2374
.
6.
Kobayashi
,
H.
,
Yata
,
S.
,
Ichikawa
,
Y.
, and
Ogami
,
Y.
,
2009
, “
Dilution Effects of Superheated Water Vapor on Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2607
2614
.
7.
Galmiche
,
B.
,
Halter
,
F.
,
Foucher
,
F.
, and
Dagaut
,
P.
,
2011
, “
Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames
,”
Energy Fuels
,
25
(
3
), pp.
948
954
.
8.
Li
,
H.-M.
,
Li
,
G.-X.
,
Sun
,
Z.-Y.
,
Zhou
,
Z.-H.
,
Li
,
Y.
, and
Yuan
,
Y.
,
2016
, “
Fundamental Combustion Characteristics of Lean and Stoichiometric Hydrogen Laminar Premixed Flames Diluted With Nitrogen or Carbon Dioxide
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
1115011
.
9.
Guo
,
H.
,
Jub
,
Y.
,
Maruta
,
K.
,
Niioka
,
T.
, and
Liu
,
F.
,
1998
, “
Numerical Investigation of CH4/CO2/Air and CH4/CO2/O2 Counterflow Premixed Flames With Radiation Reabsorption
,”
Combust. Sci. Technol.
,
135
(
1–6
), pp.
49
64
.
10.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.
11.
Zhang
,
C.
,
Atreya
,
A.
, and
Lee
,
K.
,
1992
, “
Sooting Structure of Methane Counterflow Diffusion Flames With Preheated Reactants and Dilution by Products of Combustion
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
1049
1057
.
12.
Liu
,
D.
,
Santner
,
J.
,
Togbé
,
C.
,
Felsmann
,
D.
,
Koppmann
,
J.
,
Lackner
,
A.
,
Yang
,
X.
,
Shen
,
X.
,
Ju
,
Y.
, and
Kohse-Höinghaus
,
K.
,
2013
, “
Flame Structure and Kinetic Studies of Carbon Dioxide-Diluted Dimethyl Ether Flames at Reduced and Elevated Pressures
,”
Combust. Flame
,
160
(
12
), pp.
2654
2668
.
13.
Zhao
,
H.
,
Fu
,
J.
,
Haas
,
F. M.
, and
Ju
,
Y.
,
2017
, “
Effect of Prompt Dissociation of Formyl Radical on 1,3,5-Trioxane and CH2O Laminar Flame Speeds With CO2 Dilution at Elevated Pressure
,”
Combust. Flame
,
183
, pp.
253
260
.
14.
Shy
,
S. S.
,
Yang
,
S. I.
,
Lin
,
W. J.
, and
Su
,
R. C.
,
2005
, “
Turbulent Burning Velocities of Premixed CH4/Diluent/Air Flames in Intense Isotropic Turbulence With Consideration of Radiation Losses
,”
Combust. Flame
,
143
(
1–2
), pp.
106
118
.
15.
Cohé
,
C.
,
Chauveau
,
C.
,
Gökalp
,
I.
, and
Kurtuluş
,
D. F.
,
2009
, “
CO2 Addition and Pressure Effects on Laminar and Turbulent Lean Premixed CH4 Air Flames
,”
Proc. Combust. Inst
,
32
(
2
), pp.
1803
1810
.
16.
Han
,
D.
,
Satija
,
A.
,
Kim
,
J.
,
Weng
,
Y.
,
Gore
,
J. P.
, and
Lucht
,
R. P.
,
2017
, “
Dual-Pump Vibrational CARS Measurements of Temperature and Species Concentrations in Turbulent Premixed Flames With CO2 Addition
,”
Combust. Flame
,
181
, pp.
239
250
.
17.
Kobayashi
,
H.
,
Hagiwara
,
H.
,
Kaneko
,
H.
, and
Ogami
,
Y.
,
2007
, “
Effects of CO2 Dilution on Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst
,
31
(
1
), pp.
1451
1458
.
18.
Wang
,
J.
,
Matsuno
,
F.
,
Okuyama
,
M.
,
Ogami
,
Y.
,
Kobayashi
,
H.
, and
Huang
,
Z.
,
2013
, “
Flame Front Characteristics of Turbulent Premixed Flames Diluted With CO2 and H2O at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1429
1436
.
19.
Kato
,
S.
,
Fujimori
,
T.
,
Dowling
,
A. P.
, and
Kobayashi
,
H.
,
2005
, “
Effect of Heat Release Distribution on Combustion Oscillation
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1799
1806
.
20.
Bray
,
K. N. C.
, and
Cant
,
R. S.
,
1991
, “
Some Applications of Kolmogorov's Turbulence Research in the Field of Combustion
,”
Proc. R. Soc. London A
,
434
(
1890
), pp.
217
240
.
21.
Driscoll
,
J. F.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
91
134
.
22.
Won
,
S. H.
,
Windom
,
B.
,
Jiang
,
B.
, and
Ju
,
Y.
,
2014
, “
The Role of Low Temperature Fuel Chemistry on Turbulent Flame Propagation
,”
Combust. Flame
,
161
(
2
), pp.
475
483
.
23.
Windom
,
B.
,
Won
,
S. H.
,
Reuter
,
C. B.
,
Jiang
,
B.
,
Ju
,
Y.
,
Hammack
,
S.
,
Ombrello
,
T.
, and
Carter
,
C.
,
2016
, “
Study of Ignition Chemistry on Turbulent Premixed Flames of n-Heptane/Air by Using a Reactor Assisted Turbulent Slot Burner
,”
Combust. Flame
,
169
, pp.
19
29
.
24.
Kobayashi
,
H.
,
Seyama
,
K.
,
Hagiwara
,
H.
, and
Ogami
,
Y.
,
2005
, “
Burning Velocity Correlation of Methane/Air Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
827
834
.
25.
Tamadonfar
,
P.
, and
Gülder
,
Ö. L.
,
2014
, “
Flame Brush Characteristics and Burning Velocities of Premixed Turbulent Methane/Air Bunsen Flames
,”
Combust. Flame
,
161
(
12
), pp.
3154
3165
.
26.
Smallwood
,
G. J.
,
Gülder
,
Ö. L.
,
Snelling
,
D. R.
,
Deschamps
,
B. M.
, and
Gökalp
,
I.
,
1995
, “
Characterization of Flame Front Surfaces in Turbulent Premixed Methane/Air Combustion
,”
Combust. Flame
,
101
(
4
), pp.
461
470
.
27.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
,
Miller
,
J. A.
, and
Meeks
,
E.
,
1985
, “
PREMIX: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND85-8240
.https://www.researchgate.net/publication/260388319_PREMIX_a_fortran_program_for_modeling_steady_laminar_one-dimensional_premixed_flames?enrichId=rgreq-fbd51da1dc65438639f6eff006a14564-XXX&enrichSource=Y292ZXJQYWdlOzI2MDM4ODMxOTtBUzoxMzQ4MzUyMDUwNTQ0NzhAMTQwOTE1ODYyNjM5Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
28.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1 − C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
.
29.
Lutz
,
A. E.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Rupley
,
F. M.
,
1997
, “
OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND96-8243
.https://www.osti.gov/servlets/purl/568983-AkVFPW/webviewable/
30.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
31.
Hawkes
,
E. R.
,
Sankaran
,
R.
, and
Chen
,
J. H.
,
2011
, “
Estimates of the Three-Dimensional Flame Surface Density and Every Term in Its Transport Equation From Two-Dimensional Measurements
,”
Proc. Combust. Inst
,
33
(
1
), pp.
1447
1454
.
32.
Bell
,
J. B.
,
Day
,
M. S.
,
Grcar
,
J. F.
,
Lijewski
,
M. J.
,
Driscoll
,
J. F.
, and
Filatyev
,
S. A.
,
2007
, “
Numerical Simulation of a Laboratory-Scale Turbulent Slot Flame
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1299
1307
.
33.
Wang
,
H.
,
Hawkes
,
E. R.
,
Zhou
,
B.
,
Chen
,
J. H.
,
Li
,
Z.
, and
Aldén
,
M.
,
2017
, “
A Comparison Between Direct Numerical Simulation and Experiment of the Turbulent Burning Velocity-Related Statistics in a Turbulent Methane-Air Premixed Jet Flame at High Karlovitz Number
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2045
2053
.
34.
Shepherd
,
I. G.
,
Bourguignon
,
E.
,
Michou
,
Y.
, and
Gökalp
,
I.
,
1998
, “
The Burning Rate in Turbulent Bunsen Flames
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
909
916
.
35.
Tamadonfar
,
P.
, and
Gülder
,
Ö. L.
,
2015
, “
Effects of Mixture Composition and Turbulence Intensity on Flame Front Structure and Burning Velocities of Premixed Turbulent Hydrocarbon/Air Bunsen Flames
,”
Combust. Flame
,
162
(
12
), pp.
4417
4441
.
36.
Boukhalfa
,
A.
, and
Gökalp
,
I.
,
1988
, “
Influence of the Damköhler Number on the Average Thickness of Conical Turbulent Premixed Methane/Air Flames
,”
Combust. Flame
,
73
(
1
), pp.
75
87
.
37.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2002
, “
Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
1
74
.
38.
Lachaux
,
T.
,
Halter
,
F.
,
Chauveau
,
C.
,
Gökalp
,
I.
, and
Shepherd
,
I. G.
,
2005
, “
Flame Front Analysis of High-Pressure Turbulent Lean Premixed Methane–Air Flames
,”
Proc. Combust. Inst
,
30
(
1
), pp.
819
826
.
39.
Shepherd
,
I. G.
,
1996
, “
Flame Surface Density and Burning Rate in Premixed Turbulent Flames
,”
Symp. (Int.) Combust
,
26
(
1
), pp.
373
379
.
40.
Shepherd
,
I. G.
, and
Cheng
,
R. K.
,
2001
, “
The Burning Rate of Premixed Flames in Moderate and Intense Turbulence
,”
Combust. Flame
,
127
(
3
), pp.
2066
2075
.
41.
Troiani
,
G.
,
Battista
,
F.
, and
Picano
,
F.
,
2013
, “
Turbulent Consumption Speed Via Local Dilatation Rate Measurements in a Premixed Bunsen Jet
,”
Combust. Flame
,
160
(
10
), pp.
2029
2037
.
42.
Filatyev
,
S. A.
,
Driscoll
,
J. F.
,
Carter
,
C. D.
, and
Donbar
,
J. M.
,
2005
, “
Measured Properties of Turbulent Premixed Flames for Model Assessment, Including Burning Velocities, Stretch Rates, and Surface Densities
,”
Combust. Flame
,
141
(
1–2
), pp.
1
21
.
43.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Shin
,
D. H.
,
Noble
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Measurements and Analysis of Turbulent Consumption Speeds of H2/CO Mixtures
,”
Combust. Flame
,
158
(
8
), pp.
1602
1614
.
44.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2013
, “
Turbulent Consumption Speeds of High Hydrogen Content Fuels From 1–20 Atm
,”
ASME J. Eng. Gas Turbines Power
,
136
(1), p.
011504
.
45.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2015
, “
Scaling Turbulent Flame Speeds of Negative Markstein Length Fuel Blends Using Leading Points Concepts
,”
Combust. Flame
,
162
(
2
), pp.
375
387
.
You do not currently have access to this content.