Abstract

Tilting pad thrust bearings (TPTBs) control rotor axial placement in rotating machinery, and their main advantages include low drag power loss, simple installation, and low-cost maintenance. The paper details a novel thermo-elasto-hydrodynamic (TEHD) analysis predictive tool for TPTBs that considers a three-dimensional (3D) thermal energy transport equation in the fluid film, coupled with heat conduction equations in the pads, and a generalized Reynolds equation with cross-film viscosity variation. The predicted pressure field and temperature rise are employed in a finite element (FE) structural model to produce 3D elastic deformation fields in the bearing pads. Solutions of the governing equations delivers the operating film thickness, required flowrate, and shear drag power loss, and the pad and lubricant temperature rises as a function of an applied load and shaft speed. To verify the model, predictions of pad subsurface temperature are benchmarked against published test data for a centrally pivoted eight-pad TPTB with 267 mm in outer diameter (OD) operating at 4–13 krpm (maximum surface speed = 175 m/s) and under a specific load ranging from 0.69 to 3.44 MPa. The current TEHD temperature predictions match well the test data with a maximum difference of 4 °C and 11 °C (<10%) at laminar and turbulent flow conditions, receptively. Next, the TEHD predictive tool is used to study the influence of both pad and liner material properties on the performance of a TPTB. The analysis takes a whole steel pad (without a liner or babbitt), a steel pad with a 2-mm-thick babbitt layer (common usage), a steel pad with a 2-mm-thick hard-polymer (polyether ether ketone, e.g., PEEK®) liner, and a pad entirely made of hard-polymer material, whose elastic modulus is just 12.5 GPa, only 6% that of steel. The bare steel pad reveals the poorest performance among all the pads as it produces the smallest fluid film thickness and consumes the largest drag power loss. For laminar flow operations (Reynolds number Re < 580), the babbitted-steel pad operates with the thickest fluid film and the lowest film temperature rise. For turbulent flow conditions Re>800, the solid hard-polymer pad, however, shows a 23% thicker film than that in the babbitted pad and produces up to 25% lesser drag power loss. In general, the solid hard-polymer TPTB is found to be a good fit for operation at a turbulent flow condition as it shows a lower drag power loss and a larger film thickness; however, its demand for a too large supply flowrate is significant. Predictions for steel pads with various hard-polymer liner and babbitt thicknesses demonstrate that using a hard-polymer liner, instead of white metal, isolates the pad from the fluid film and results in an up to 30 °C (50%) lower temperature rise in the pads than that for a babbitted-steel pad. For operations under a heavy specific load (>3.0 MPa), however, a thick hard-polymer liner extensively deforms and results in a small film thickness.

References

1.
Nakano
,
T.
,
Waki
,
Y.
,
Yamashita
,
K.
,
Kaikogi
,
T.
,
Uesato
,
M.
, and
Yamada
,
Y.
,
2007
, “
Development of Thrust and Journal Bearings With High Specific Load for Next Generation Steam Turbine
,”
International Conference on Challenges of Power Engineering and Environment
,
Hangzhou, China
, Sept. 23–27, pp.
350
355
.
2.
Khonsari
,
M.
,
1987
, “
A Review of Thermal Effects in Hydrodynamic Bearings—Part I: Slider and Thrust Bearings
,”
ASME J. Tribol.
,
30
(
1
), pp.
19
25
.10.1080/05698198708981725
3.
Robinson
,
C.
, and
Cameron
,
A.
,
1975
, “
Studies in Hydrodynamic Thrust Bearings. I. Theory Considering Thermal and Elastic Distortions
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
278
(
1283
), pp.
351
366
.10.1098/rsta.1975.0029
4.
Ettles
,
C.
,
1976
, “
The Development of a Generalized Computer Analysis for Sector Shaped Tilting Pad Thrust Bearings
,”
ASME J. Tribol.
,
19
(
2
), pp.
153
163
.10.1080/05698197608982789
5.
Almqvist
,
T.
,
Glavatskikh
,
S.
, and
Larsson
,
R.
,
2000
, “
THD Analysis of Tilting Pad Thrust Bearings-Comparison Between Theory and Experiments
,”
ASME J. Tribol.
,
122
(
2
), pp.
412
417
.10.1115/1.555377
6.
Vohr
,
J.
,
1981
, “
Prediction of the Operating Temperature of Thrust Bearings
,”
J. Lubr. Technol.
,
103
(
1
), pp.
97
106
.10.1115/1.3251621
7.
Jeng
,
M.
,
Zhou
,
G.
, and
Szeri
,
A.
,
1986
, “
A Thermohydrodynamic Solution of Pivoted Thrust Pads—Part I: Theory
,”
ASME J. Tribol.
,
108
(
2
), pp.
195
207
.10.1115/1.3261160
8.
Jeng
,
M.
,
Zhou
,
G.
, and
Szeri
,
A.
,
1986
, “
A Thermohydrodynamic Solution of Pivoted Thrust Pads—Part II: Static Loading
,”
ASME J. Tribol.
,
108
(
2
), pp.
208
213
.10.1115/1.3261163
9.
Jeng
,
M.
, and
Szeri
,
A.
,
1986
, “
A Thermohydrodynamic Solution of Pivoted Thrust Pads—Part III: Linearized Force Coefficients
,”
ASME J. Tribol.
,
108
(
2
), pp.
214
218
.10.1115/1.3261165
10.
Ng
,
C. W.
, and
Pan
,
C.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
J. Basic Eng.
,
87
(
3
), pp.
675
682
.10.1115/1.3650640
11.
Deng
,
X.
,
Weaver
,
B.
,
Watson
,
C.
,
Branagan
,
M.
,
Wood
,
H.
, and
Fittro
,
R.
,
2018
, “
Modeling Reichardt's Formula for Eddy Viscosity in the Fluid Film of Tilting Pad Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082505
.10.1115/1.4038857
12.
Brockett
,
T. S.
,
Barrett
,
L. E.
, and
Allaire
,
P. E.
,
1996
, “
Thermoelastohydrodynamic Analysis of Fixed Geometry Thrust Bearings Including Runner Deformation
,”
ASME J. Tribol.
,
39
(
3
), pp.
555
562
.10.1080/10402009608983566
13.
Glavatskih
,
S.
, and
Fillon
,
M.
,
2001
, “
TEHD Analysis of Tilting-Pad Thrust Bearings-Comparison With Experimental Data
,”
International Tribology Conference, Japanese Society of Tribologists
,
Tokyo, Japan
, pp.
1579
1584
.
14.
Ettles
,
C.
,
Knox
,
R.
,
Ferguson
,
J.
, and
Horner
,
D.
,
2003
, “
Test Results for PTFE-Faced Thrust Pads With Direct Comparison Against Babbitt-Faced Pads and Correlation With Analysis
,”
ASME J. Tribol.
,
125
(
4
), pp.
814
823
.10.1115/1.1576427
15.
Dwyer-Joyce
,
R.
,
Harper
,
P.
,
Pritchard
,
J.
, and
Drinkwater
,
B.
,
2006
, “
Oil Film Measurement in Poly-Tetra-Fluoro-Ethylene-Faced Thrust Pad Bearings for Hydrogenerator Applications
,”
J. Power Energy
,
220
(
6
), pp.
619
628
.10.1243/09576509JPE264
16.
McCarthy
,
D.
,
Glavatskih
,
S.
, and
Sherrington
,
I.
,
2005
, “
Oil Film Thickness and Temperature Measurements in PTFE and Babbitt Faced Tilting Pad Thrust Bearings
,”
J. Eng. Tribol.
,
219
(
3
), pp.
179
185
.10.1243/135065005X9853
17.
Sumi
,
Y.
,
Sano
,
T.
,
Shinohara
,
T.
,
Tochitani
,
N.
,
Otani
,
Y.
,
Yamashita
,
K.
, and
Nakano
,
T.
,
2014
, “
Development of Thrust Bearings With High Specific Load
,”
ASME Paper No. GT2014-26798
.10.1115/GT2014-26798
18.
Glavatskih
,
S.
, and
Fillon
,
M.
,
2004
, “
TEHD Analysis of Thrust Bearings With PTFE-Faced Pads
,”
ASME Paper No. TRIB2004-64178
.10.1115/TRIB2004-64178
19.
Radeş
,
M.
,
1972
, “
Dynamic Analysis of an Inertial Foundation Model
,”
Int. J. Solids Struct.
,
8
(
12
), pp.
1353
1372
.10.1016/0020-7683(72)90084-4
20.
Mikula
,
A.
, and
Gregory
,
R.
,
1983
, “
A Comparison of Tilting Pad Thrust Bearing Lubricant Supply Methods
,”
J. Lubr. Technol.
,
105
(
1
), pp.
39
45
.10.1115/1.3254540
21.
Henssler
,
D.
,
Schneider
,
L.
,
Gassmann
,
S.
,
Felix
,
T.
, et al.,
2015
, “
Qualification and Optimization of Solid Polymer Tilting Pad Bearings for Subsea Pump Applications
,”
Proceedings of 31st International Pump Users Symposium
,
Houston, TX
, Sept. 14–17.10.21423/R14329
22.
Wodtke
,
M.
, and
Wasilczuk
,
M.
,
2016
, “
Evaluation of Apparent Youngs Modulus of the Composite Polymer Layers Used as Sliding Surfaces in Hydrodynamic Thrust Bearings
,”
J. Tribol. Int.
,
97
, pp.
244
252
.10.1016/j.triboint.2016.01.040
23.
Brockett
,
T. S.
,
1995
, “
Thermoelastohydrodynamic Lubrication in Thrust Bearings
,”
Ph.D. dissertation
,
University of Virginia
,
Charlottesville, VA
.
24.
Abramovitz
,
S.
,
1955
, “
Turbulence in a Tilting-Pad Thrust Bearing
,”
J. Franklin Ins.
,
259
(
1
), pp.
61
64
.10.1016/0016-0032(55)91068-1
25.
Gregory
,
R.
,
1974
, “
Performance of Thrust Bearings at High Operating Speeds
,”
J. Lubr. Technol.
,
96
(
1
), pp.
7
13
.10.1115/1.3451918
26.
Capitao
,
J.
,
Gregory
,
R.
, and
Whitford
,
R.
,
1976
, “
Effects of High-Operating Speeds on Tilting Pad Thrust Bearing Performance
,”
J. Lubr. Technol.
,
98
(
1
), pp.
73
79
.10.1115/1.3452779
27.
Markin
,
D.
,
McCarthy
,
D.
, and
Glavatskih
,
S.
,
2003
, “
A FEM Approach to Simulation of Tilting Pad Thrust Bearing Assemblies
,”
J. Tribol. Int.
,
36
(
11
), pp.
807
814
.10.1016/S0301-679X(03)00097-5
28.
Zhou
,
J.
,
Blair
,
B.
,
Argires
,
J.
, and
Pitsch
,
D.
,
2015
, “
Experimental Performance Study of a High Speed Oil Lubricated Polymer Thrust Bearing
,”
J. Lubr.
,
3
(
1
), pp.
3
13
.10.3390/lubricants3010003
29.
Wodtke
,
M.
,
2016
, “
Hydrodynamic Thrust Bearings With Polymer Lining
,”
ASME J. Tribol.
,
268
(
4
), pp.
225
237
.10.5604/01.3001.0010.6998
30.
San Andrés
,
L.
, and
Koosha
,
R.
,
2017
, “
Thermo Hydrodynamic (THD) Computational Analysis for Tilting Pad Thrust Bearings (TPTBs)
,”
Annual Progress Report to the Turbomachinery Research Consortium
,
Texas A&M University
,
College Station, TX
, Report No. TRC-B&C-05-017.
31.
Glavatskikh
,
S. B.
,
2001
, “
Steady State Performance Characteristics of a Tilting Pad Thrust Bearing
,”
ASME J. Tribol.
,
123
(
3
), pp.
608
615
.10.1115/1.1308041
32.
Guo
,
A.
,
Wang
,
X.
,
Jin
,
J.
,
Hua
,
D. Y.
, and
Hua
,
Z.
,
2015
, “
Experimental Test of Static and Dynamic Characteristics of Tilting Pad Thrust Bearings
,”
J. Adv. Mech. Eng.
,
7
(
7
), pp.
1
8
.10.1177/1687814015593878
33.
Mikula
,
A. M.
,
1986
, “
Evaluating Tilting Pad Thrust Bearing Operating Temperatures
,”
ASME J. Tribol.
,
29
(
2
), pp.
173
178
.10.1080/05698198608981675
34.
Glavatskih
,
S.
, and
Fillon
,
M.
,
2006
, “
TEHD Analysis of Thrust Bearings With PTFE-Faced Pads
,”
ASME J. Tribol.
,
128
(
1
), pp.
49
58
.10.1115/1.1843833
You do not currently have access to this content.