Abstract

In modern gas turbines, endwall contouring (EWC) is employed to modify the static pressure field downstream of the vanes and minimize the growth of secondary flow structures developed in the blade passage. Purge flow (or egress) from the upstream rim-seal interferes with the mainstream flow, adding to the loss generated in the rotor. Despite this, EWC is typically designed without consideration of mainstream–egress interactions. The performance gains offered by EWC can be reduced, or in the limit eliminated, when purge air is considered. In addition, EWC can result in a reduction in sealing effectiveness across the rim seal. Consequently, industry is pursuing a combined design approach that encompasses the rim-seal, seal-clearance profile, and EWC on the rotor endwall. This paper presents the design of and preliminary results from a new single-stage axial turbine facility developed to investigate the fundamental fluid dynamics of egress–mainstream flow interactions. To the authors' knowledge, this is the only test facility in the world capable of investigating the interaction effects between cavity flows, rim seals, and EWC. The design of optical measurement capabilities for future studies, employing volumetric velocimetry (VV) and planar laser-induced fluorescence (PLIF), is also presented. The fluid-dynamically scaled rig operates at benign pressures and temperatures suited to these techniques and is modular. The facility enables expedient interchange of EWC (integrated into the rotor bling), blade-fillet and rim-seal geometries. The measurements presented in this paper include: gas concentration effectiveness and swirl measurements on the stator wall and in the wheel-space core; pressure distributions around the nozzle guide vanes (NGV) at three different spanwise locations; pitchwise static pressure distributions downstream of the NGV at four axial locations on the stator platform.

References

1.
Langston
,
L. S.
,
2006
, “
Secondary Flows in Axial Turbines—a Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
2.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
1999
, “
Non-Axisymmetric Turbine End Wall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.10.1115/1.555445
3.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls—Part II: Experimental Validation
,”
ASME
Paper No. 2001-GT-0505. 10.1115/2001-GT-0505
4.
Harvey
,
N. W.
,
Brennan
,
G.
,
Newman
,
D. A.
, and
Rose
,
M. G.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
ASME
Paper No. GT2002-30337. 10.1115/GT2002-30337
5.
Schüpbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric endwalls—Part II: Time-Resolved Flow Physics
,”
ASME J. Turbomach.
,
132
(
2
), p.
021008
.10.1115/1.3103926
6.
Schüpbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.10.1115/1.4000485
7.
Schüpbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2011
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021011
.10.1115/1.4000578
8.
Regina
,
K.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Lohaus
,
A.
,
Voelker
,
S.
, and
auf dem Kampe
,
T.
,
2014
, “
Aerodynamic Robustness of End Wall Contouring Against Rim Seal Purge Flow
,”
ASME Paper No. GT2014-26007
. 10.1115/GT2014-26007
9.
Wood
,
L. E.
,
Jones
,
R. R.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Rees
,
D. A. S.
, and
Sangan
,
C. M.
,
2019
, “
A Geometry Generation Framework for Contoured Endwalls
,”
ASME Paper No. GT2019-90446
. 10.1115/GT2019-90446
10.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
.10.1115/1.2927684
11.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
12.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
M. J.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.10.1115/1.4033938
13.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage—Part I: Aerodynamic Measurements in the Stationary Frame
,”
ASME Paper No. 2001-GT-0119
. 10.1115/2001-GT-0119
14.
Paniagua
,
G.
,
Dénos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.10.1115/1.1791644
15.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.10.1115/1.4003838
16.
Porreca
,
L.
,
Yun
,
Y. I.
,
Kalfas
,
A. I.
,
Song
,
S. J.
, and
Abhari
,
R. S.
,
2006
, “
Investigation of 3D Unsteady Flows in a Two Stage Shrouded Axial Turbine Using Stereoscopic PIV and FRAP—Part I: Interstage Flow Interactions
,”
ASME Paper No. GT2006-90752
. 10.1115/GT2006-90752
17.
Bryanston-Cross
,
P. J.
,
Chana
,
K. S.
, and
Healey
,
N.
,
1997
, “
Particle Image Velocimetry Measurements From the Stator-Rotor Interaction Region of a High Pressure Transonic Turbine Stage at the DERA Isentropic Light Piston Facility
,”
AGARD PEP Symposium on Advanced Non-Intrusive Instrumentation for Propulsion Engines
.
18.
Yun
,
Y. I.
,
Porreca
,
L.
,
Kalfas
,
A. I.
,
Song
,
S. J.
, and
Abhari
,
R. S.
,
2006
, “
Investigation of 3D Unsteady Flows in a Two-Stage Shrouded Axial Turbine Using Stereoscopic PIV and FRAP—Part II: Kinematics of Shroud Cavity Flow
,”
ASME Paper No. GT2006-91020
. 10.1115/GT2006-91020
19.
Balzani
,
N.
,
Scarano
,
F.
,
Riethmuller
,
M. L.
, and
Breugelmans
,
F. A. E.
,
2000
, “
Experimental Investigation of the Blade-to-Blade Flow in a Compressor Rotor by Digital Particle Image Velocimetry
,”
ASME J. Turbomach.
,
122
(
4
), pp.
743
750
.10.1115/1.1311283
20.
Kegalj
,
M.
, and
Schiffer
,
H. P.
,
2009
, “
Endoscopic PIV Measurements in a Low Pressure Turbine Rig
,”
Exp. Fluids
,
47
(
4–5
), pp.
689
705
.10.1007/s00348-009-0712-8
21.
Kirby
,
B. J.
, and
Hanson
,
B. K.
,
2000
, “
Imaging of CO and CO2 Using Infrared Planar Laser-Induced Fluorescence
,”
Proc. Comb. Inst.
,
28
(
1
), pp.
253
259
.10.1016/S0082-0784(00)80218-0
22.
Kirby
,
B. J.
,
2001
, “
Infrared Planar Laser-Induced Fluorescence Imaging and Applications to Imaging of Carbon Monoxide and Carbon Dioxide
,”
Ph.D. thesis
,
Stanford University
,
Stanford, CA
.
23.
Crimaldi
,
J. P.
,
2008
, “
Planar Laser Induced Fluorescence in Aqueous Flows
,”
Exp. Fluids
,
44
(
6
), pp.
851
863
.10.1007/s00348-008-0496-2
24.
Zetterberg
,
J.
,
Blomberg
,
S.
,
Gustafson
,
J.
,
Sun
,
Z. W.
,
Li
,
Z. S.
,
Lundgren
,
E.
, and
Aldén
,
M.
,
2012
, “
An in Situ Set Up for the Detection of CO2 From Catalytic CO Oxidation by Using Planar Laser-Induced Fluorescence
,”
Rev. Sci. Instrum.
,
83
(
5
), p.
053104
.10.1063/1.4711130
25.
Pu
,
J.
,
Wang
,
J.
,
Ma
,
S.
, and
Wu
,
X.
,
2015
, “
An Experimental Investigation of Geometric Effect of Upstream Converging Slot-Hole on End-Wall Film Cooling and Secondary Vortex Characteristics
,”
Exp. Therm. Fluid Sci.
,
69
, pp.
58
72
.10.1016/j.expthermflusci.2015.08.002
26.
Carvalho Figueiredo
,
A. J.
,
Jones
,
R. R.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
,
2018
, “
Volumetric Velocimetry Measurements of Film Cooling Jets
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031021
.
27.
Stellmacher
,
M.
, and
Obermayer
,
K.
,
2000
, “
A New Particle Tracking Algorithm Based on Deterministic Annealing and Alternative Distance Measures
,”
Exp. Fluids
,
28
(
6
), pp.
506
518
.10.1007/s003480050412
28.
Woisetschläger
,
J.
, and
Göttlich
,
E.
,
2007
, “
Recent Applications of Particle Image Velocimetry to Flow Research in Thermal Turbomachinery
,”
Particle Image Velocimetry (Topics in Applied Physics, Vol. 112)
,
Springer
, Berlin, pp.
311
331
.
29.
Ceyhan
,
I.
,
dHoop
,
E. M.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Bryanston-Cross
,
P. J.
,
1998
, “
Optical Instrumentation for Temperature and Velocity Measurements in Rig Turbines
,”
AGARD PEP Symposium on Advanced Non-Intrusive Instrumentation for Propulsion Engines
.
30.
Sell
,
M.
,
Schlienger
,
J.
,
Pfau
,
A.
,
Treiber
,
M.
, and
Abhari
,
R. S.
,
2001
, “
The 2-Stage Axial Turbine Test Facility “LISA
,”
ASME Paper No. 2001-GT-0492
. 10.1115/2001-GT-0492
31.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
, “
Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular, Conical or Annular Cross-Section
,”
Fluid Dynamics of Internal Flow
,
Elsevier
,
New York
, pp.
270
319
.
32.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD simulations—Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.10.1115/1.1412235
33.
Roach
,
P. E.
,
1987
, “
The Generation of nearly isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
34.
Levenspiel
,
O.
,
1958
, “
Longitudinal Mixing of Fluids Flowing in Circular Pipes
,”
Ind. Eng. Chem.
,
50
(
3
), pp.
343
346
.10.1021/ie50579a034
35.
Buddenberg
,
J. W.
, and
Wilke
,
C. R.
,
1949
, “
Calculation of Gas Mixture Viscosities
,”
Ind. Eng. Chem.
,
41
(
7
), pp.
1345
1347
.10.1021/ie50475a011
36.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
M. J.
, and
Lock
,
G. D.
,
2016
, “
Measurements and Modeling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012603
.
37.
Schreiner
,
B. D.
,
Li
,
Y. S.
,
Wilson
,
M.
, and
Sangan
,
C. M.
, “
Computational Investigation of Purge-Mainstream Interaction in Gas Turbines
,”
ASME J. Turbomach.
(to appear).
38.
Daily
,
J. W.
,
Ernst
,
W. D.
, and
Asbedian
,
V. V.
,
1964
, “
Enclosed Rotating Disks With Superposed Throughflow
,” MIT Hydrodynamics Lab, Report No. 64.
39.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2018
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.
40.
Boudet
,
J.
,
Autef
,
V. N. D.
,
Chew
,
J. W.
,
Hills
,
N. J.
, and
Gentilhomme
,
O.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
(
1098
), pp.
373
383
.
41.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.10.1115/1.1556411
42.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2018
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor–Stator Cavity
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112502
.10.1115/1.4040308
43.
Hualca
,
F. P.
,
Horwood
,
J. T. M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2019
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME Paper No. GT2019-90987
. 10.1115/GT2019-90987
44.
Carvalho Figueiredo
,
A. J.
,
Jones
,
R. R.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
, “
A Borescope Design Tool for Laser Measurements in Fluids
,”
Opt. Lasers Eng
.
45.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.