Abstract

To ensure the feasibility of gas turbines, despite rising commodity prices and emission restrictions, an enhancement of both their efficiency and flexibility is necessary. The consequential higher loading of components at high temperature conditions calls for an increased use of damage tolerant design approaches. To still guarantee a safe operation, a sound understanding and reliable estimations for crack growth under service conditions are indispensable. In this paper, the results from several projects in this field conducted at the TU Darmstadt and involved partners are summarized to identify and describe the various influences on crack growth under creep-fatigue and thermo-mechanical fatigue (TMF) loading. The activation of damage mechanisms under TMF loading and interactions between them is dependent on the temperature cycle and the respective load phasing. Depending on the type of loading (force versus strain control), contrary influences of the phase shift on the TMF crack growth rates are found. This can partially be attributed to the differences in mean stress evolution. Crack initiation and propagation under creep-fatigue and TMF conditions are also often connected with significant scattering of initiation sites and crack growth rates. One reason for this nonuniform behavior is the interaction of geometric discontinuities with the microstructure. To investigate the role of the local grain structure for crack initiation and propagation, in situ observation techniques for crack tip movement and local strain fields were applied. Harsh gradients in the local deformation behavior were identified as origins of secondary crack initiation. To describe crack growth under creep-fatigue and TMF conditions, the linear accumulation model “O.C.F.” was developed. It is based on the contributions of fatigue, creep, and oxidation to crack growth per load cycle. This model is capable of reproducing the effects of time-dependent damage, different load ratios, TMF phase shifts, as well as component geometry. Substantial advantages of this method are its independence from empiric correction factors to assess changing load cycle forms and the possibility to give analytic estimations without the need of extensive data processing. The model is currently validated for three nickel cast alloys, also including single-crystalline and directionally solidified cast variants, different creep-fatigue and TMF loading scenarios, and crack geometries. The model's linear formulation allows assessing the dominant driver of crack growth at each stage of an experiment. These predictions are compared with fractographic investigations and in situ observations of crack paths to identify the mechanisms of crack growth under different TMF load cycle forms.

References

1.
Riva
,
A.
,
Costa
,
A.
,
Dimaggio
,
D.
,
Villari
,
P.
,
Kraemer
,
K. M.
,
Mueller
,
F.
, and
Oechsner
,
M.
,
2016
, “
A Thermo-Mechanical Fatigue Crack Growth Accumulative Model for Gas Turbine Blades and Vanes
,”
ASME
Paper No. GT2016-58053.10.1115/GT2016-58053
2.
Stekovic
,
S.
,
2017
, “
DevTMF: Publishable Summary for the 1st Reporting Period 18 Months After the Project Start
,” EU Grant ID: H2020-EU.3.4.5.5.686600,
epub
. https://www.researchgate.net/profile/Svjetlana_Stekovic/project/DevTMF/attachment/59df7022b53d2fe117b54971/AS:548631951884288@1507815458629/download/Publishable+summary+for+RG.pdf?context=ProjectUpdatesLog
3.
Bouvard
,
J. L.
,
Gallerneau
,
F.
,
Paulmier
,
P.
, and
Chaboche
,
J.-L.
,
2012
, “
A Phenomenological Model to Predict the Crack Growth in Single Crystal Superalloys at High Temperature
,”
Int. J. Fatigue
,
38
, pp.
130
143
.10.1016/j.ijfatigue.2011.12.011
4.
Pretty
,
C. J.
,
Whitaker
,
M. T.
, and
Williams
,
S. J.
,
2017
, “
Thermo-Mechanical Fatigue Crack Growth of RR1000
,”
Materials
,
10
(
1
), p.
34
.10.3390/ma10010034
5.
Beck
,
T.
,
Lang
,
K.-H.
, and
Löhe
,
D.
,
2010
, “
Interaction of Thermally Induced and Mechanical Fatigue
,”
Trans. Indian Inst. Met.
,
63
(
2–3
), pp.
195
202
.10.1007/s12666-010-0027-8
6.
Schweizer
,
C.
,
2013
, “
Physikalisch Basierte Modelle Für Ermüdungsrisswachstum Und Anrisslebensdauer Unter Thermischen Und Mechanischen Belastungen
,” Ph.D. thesis, Karlsruher Institut für Technologie, Aachen, Germany.
7.
Nicholas
,
T.
,
Heil
,
M. L.
, and
Haritos
,
G. K.
,
1989
, “
Predicting Crack Growth Under Thermo-Mechanical Cycling
,”
Int. J. Fract.
,
41
(
3
), pp.
157
176
.10.1007/BF00018655
8.
Mueller
,
F.
,
Scholz
,
A.
, and
Oechsner
,
M.
,
2014
, “
A Proposal for a Straightforward Way to Estimate Thermo-Mechanical Fatigue Crack Growth
,”
Tenth Liège Conference on Materials for Advanced Power Engineering
, Liege, Belgium, Sept. 14–17, pp.
665
677
.
9.
Mueller
,
F.
,
Scholz
,
A.
, and
Berger
,
C.
,
2011
, “
Creep Crack Behavior of a Coarse Grain Nickel-Base Super Alloy
,”
Mater. High Temp.
,
28
(
2
), pp.
103
108
.10.3184/096034011X13056438123488
10.
Kraemer
,
K. M.
,
Mueller
,
F.
, and
Oechsner
,
M.
,
2017
, “
Application-Oriented Description of Time-/Temperature Dependent Crack Growth in a Conventionally Cast Nickel-Based Superalloy
,”
Int. J. Fatigue
,
96
, pp.
78
88
.10.1016/j.ijfatigue.2016.11.025
11.
Kraemer
,
K. M.
,
Mueller
,
F.
,
Kontermann
,
C.
, and
Oechsner
,
M.
,
2017
, “
Estimation of Fatigue Crack Growth Under Complex Loading Using an Accumulative Approach
,”
Mater. High Temp.
,
3
, pp.
1
12
.10.1080/09603409.2017.1369665
12.
Kraemer
,
K. M.
,
Mueller
,
F.
,
Oechsner
,
M.
,
Riva
,
A.
,
Dimaggio
,
D.
,
Vacchieri
,
E.
, and
Poggio
,
E.
,
2017
, “
Estimation of Thermo-Mechanical Fatigue Crack Growth Using an Accumulative Approach Based on Isothermal Test Data
,”
Int. J. Fatigue
,
99
, pp.
250
257
.10.1016/j.ijfatigue.2016.10.020
13.
Kraemer
,
K. M.
,
Langschwager
,
K.
,
Mueller
,
F.
, and
Oechsner
,
M.
,
2017
, “
Observation of the Local Deformation Behavior of Coarse Grained Nickel Cast Alloys Under Thermo-Mechanical Fatigue Loading Using Digital Image Correlation
,”
Eighth International Conference on Low Cycle Fatigue
(
LCF 8
), T. Beck, E. Charkaluk, eds., Dresden, Germany, June 27–29, pp.
213
218
.https://www.researchgate.net/publication/318206710_OBSERVATION_OF_THE_LOCAL_DEFORMATION_BEHAVIOUR_OF_COARSE_GRAINED_NICKEL_CAST_ALLOYS_UNDER_THERMO-MECHANICAL_FATIGUE_LOADING_USING_DIGITAL_IMAGE_CORRELATION
14.
Siebörger
,
D.
,
Knake
,
H.
, and
Glatzel
,
U.
,
2001
, “
Temperature Dependence of the Elastic Moduli of the Nickel-Base Superalloy CMSX-4 and Its Isolated Phases
,”
Mater. Sci. Eng., A
,
298
(
1–2
), pp.
26
33
.10.1016/S0921-5093(00)01318-6
15.
Sehitoglu
,
H.
, and
Boismier
,
D. A.
,
1990
, “
Thermo-Mechanical Fatigue of Mar-M247—Part 2: Life Prediction
,”
J. Eng. Mater. Technol.
,
112
(
1
), p.
80
.10.1115/1.2903191
16.
Bensch
,
M.
,
Preußner
,
J.
,
Hüttner
,
R.
,
Obigodi
,
G.
,
Virtanen
,
S.
,
Gabel
,
J.
, and
Glatzel
,
U.
,
2010
, “
Modelling and Analysis of the Oxidation Influence on Creep Behavior of Thin-Walled Structures of the Single-Crystal Nickel-Base Superalloy René N5 at 980 °C
,”
Acta Mater.
,
58
(
5
), pp.
1607
1617
.10.1016/j.actamat.2009.11.004
17.
Sengupta
,
A.
, and
Putatunda
,
S. K.
,
1993
, “
Kinetics of γ' Precipitation and Its Influence on Fatigue Crack Growth Behavior of a New Single-Crystal Nickel-Based Superalloy at Room Temperature
,”
JMEP
,
2
(
1
), pp.
57
68
.10.1007/BF02649675
18.
Webster
,
G. A.
, and
Ainsworth
,
R. A.
,
1994
,
High Temperature Component Life Assessment
, 1st ed.,
Chapman & Hall
,
London
.
19.
Kraemer
,
K. M.
,
2018
, “
Akkumulative Beschreibung Des Risswachstums in Nickel-Gusslegierungen Unter Anisothermen Bedingungen
,” Ph.D. thesis, Technische Universität Darmstadt, Aachen, Germany.
20.
Newman
,
J. C.
,
1984
, “
A Crack Opening Stress Equation for Fatigue Crack Growth
,”
Int. J. Fract.
,
24
(
4
), pp.
R131
R135
.10.1007/BF00020751
21.
Gross
,
D.
,
1996
,
Bruchmechanik
,
Springer
,
Berlin
.
You do not currently have access to this content.