Abstract

The simulation of soot evolution is a problem of relevance for the development of low-emission aero-engine combustors. Apart from detailed CFD approaches, it is important to also develop models with modest computational cost so that a large number of geometries can be explored, especially in view of the need to predict engine-out soot particle size distributions (PSDs) to meet future regulations. This paper presents an approach based on Incompletely Stirred Reactor Network (ISRN) modeling that simplifies calculations, allowing for the use of very complex chemistry and soot models. The method relies on a network of incompletely stirred reactors (ISRs), which are inhomogeneous in terms of mixture fraction but characterized by homogeneous conditional averages, with the conditioning performed on the mixture fraction. The ISRN approach is demonstrated here for a single sector lean-burn model combustor operating on Jet-A1 fuel in pilot-only mode, for which detailed CFD and experimental data are available. Results show that reasonable accuracy is obtained at a significantly reduced computational cost. Real fuel chemistry and a detailed physicochemical sectional soot model are consequently employed to investigate the sensitivity of ISRN predictions to the chosen chemical mechanism and provide an estimate of the soot PSD at the combustor exit.

References

1.
D'Anna
,
A.
,
2009
, “
Combustion-Formed Nanoparticles
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
593
613
.10.1016/j.proci.2008.09.005
2.
Rigopoulos
,
S.
,
2019
, “
Modelling of Soot Aerosol Dynamics in Turbulent Flow
,”
Flow, Turbul. Combust.
,
103
(
3
), pp.
565
604
.10.1007/s10494-019-00054-8
3.
Wang
,
H.
,
2011
, “
Formation of Nascent Soot and Other Condensed-Phase Materials in Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
41
67
.10.1016/j.proci.2010.09.009
4.
Rigopoulos
,
S.
,
2010
, “
Population Balance Modelling of Polydispersed Particles in Reactive Flows
,”
Prog. Energy Combust. Sci.
,
36
(
4
), pp.
412
443
.10.1016/j.pecs.2009.12.001
5.
Roy
,
S. P.
, and
Haworth
,
D. C.
,
2016
, “
A Systematic Comparison of Detailed Soot Models and Gas-Phase Chemical Mechanisms in Laminar Premixed Flames
,”
Combust. Sci. Technol.
,
188
(
7
), pp.
1021
1053
.10.1080/00102202.2016.1145117
6.
Chong
,
S. T.
,
Raman
,
V.
,
Mueller
,
M. E.
,
Selvaraj
,
P.
, and
Im
,
H. G.
,
2019
, “
Effect of Soot Model, Moment Method, and Chemical Kinetics on Soot Formation in a Model Aircraft Combustor
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
1065
1074
.10.1016/j.proci.2018.06.093
7.
Sewerin
,
F.
, and
Rigopoulos
,
S.
,
2018
, “
An LES-PBE-PDF Approach for Predicting the Soot Particle Size Distribution in Turbulent Flames
,”
Combust. Flame
,
189
, pp.
62
76
.10.1016/j.combustflame.2017.09.045
8.
Rodrigues
,
P.
,
Franzelli
,
B.
,
Vicquelin
,
R.
,
Gicquel
,
O.
, and
Darabiha
,
N.
,
2018
, “
Coupling an LES Approach and a Soot Sectional Model for the Study of Sooting Turbulent Non-Premixed Flames
,”
Combust. Flame
,
190
, pp.
477
499
.10.1016/j.combustflame.2017.12.009
9.
Zhang
,
T.
,
Zhao
,
L.
,
Kholghy
,
M. R.
,
Thion
,
S.
, and
Thomson
,
M. J.
,
2019
, “
Detailed Investigation of Soot Formation From Jet Fuel in a Diffusion Flame With Comprehensive and Hybrid Chemical Mechanisms
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2037
2045
.10.1016/j.proci.2018.06.012
10.
Gkantonas
,
S.
,
Sirignano
,
M.
,
Giusti
,
A.
,
D'Anna
,
A.
, and
Mastorakos
,
E.
,
2019
, “
Comprehensive Soot Particle Size Distribution Modelling of a Model Rich-Quench-Lean Burner
,”
11th Mediterannean Combustion Symposium
,
Tenerife, Spain
, June 16–20, Paper No.
133
.10.17863/cam.43221
11.
Gkantonas
,
S.
,
Sirignano
,
M.
,
Giusti
,
A.
,
D'Anna
,
A.
, and
Mastorakos
,
E.
,
2020
, “
Comprehensive Soot Particle Size Distribution Modelling of a Model Rich-Quench-Lean Burner
,”
Fuel
,
270
, p.
117483
.10.1016/j.fuel.2020.117483
12.
Saffaripour
,
M.
,
Kholghy
,
M. R.
,
Dworkin
,
S. B.
, and
Thomson
,
M. J.
,
2013
, “
A Numerical and Experimental Study of Soot Formation in a Laminar Coflow Diffusion Flame of a Jet A-1 Surrogate
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1057
1065
.10.1016/j.proci.2012.06.176
13.
Smith
,
N. S.
,
1994
, “
Development of the Conditional Moment Closure Method for Modelling Turbulent Combustion
,”
Ph.D. thesis
,
University of Sydney
,
Sydney, Australia
.
14.
Mobini
,
K.
,
1998
, “
An Investigation of the Imperfectly Stirred Reactor Modelling of Recirculating Combustion Flows
,” Ph.D. thesis,
University of Sydney
,
Sydney, Australia
.
15.
Mobini
,
K.
, and
Bilger
,
R. W.
,
2004
, “
Imperfectly Stirred Reactor Model Predictions of Reaction in a Burner With Strong Recirculation
,”
Combust. Sci. Technol.
,
176
(
1
), pp.
45
70
.10.1080/00102200490255334
16.
Mobini
,
K.
, and
Bilger
,
R. W.
,
2009
, “
Parametric Study of the Incompletely Stirred Reactor Modeling
,”
Combust. Flame
,
156
(
9
), pp.
1818
1827
.10.1016/j.combustflame.2009.06.017
17.
Klimenko
,
A. Y.
, and
Bilger
,
R. W.
,
1999
, “
Conditional Moment Closure for Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
25
(
6
), pp.
595
687
.10.1016/S0360-1285(99)00006-4
18.
Sitte
,
M. P.
, and
Mastorakos
,
E.
,
2019
, “
Large Eddy Simulation of a Spray Jet Flame Using Doubly Conditional Moment Closure
,”
Combust. Flame
,
199
, pp.
309
323
.10.1016/j.combustflame.2018.08.026
19.
Gough
,
A.
,
Mobini
,
K.
,
Chen
,
Y.
, and
Bilger
,
R. W.
,
1998
, “
Measurements and Predictions in a Confined Bluff-Body Burner Modeled as an Imperfectly Stirred Reactor
,”
Proc. Combust. Inst.
,
27
(
2
), pp.
3181
3188
.10.1016/S0082-0784(98)80181-1
20.
Attili
,
A.
,
Bisetti
,
F.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2014
, “
Formation, Growth, and Transport of Soot in a Three-Dimensional Turbulent Non-Premixed Jet Flame
,”
Combust. Flame
,
161
(
7
), pp.
1849
1865
.10.1016/j.combustflame.2014.01.008
21.
Giusti
,
A.
,
Gkantonas
,
S.
,
Foale
,
J. M.
, and
Mastorakos
,
E.
,
2018
, “
Numerical Investigation of Flame Structure and Soot Formation in a Lab-Scale Rich-Quench-Lean Burner
,”
ASME
Paper No. GT2018-76705.10.1115/GT2018-76705
22.
Lyra
,
S.
, and
Cant
,
S.
,
2013
, “
Analysis of High Pressure Premixed Flames Using Equivalent Reactor Networks for Predicting NOx Emissions
,”
Fuel
,
107
, pp.
261
268
.10.1016/j.fuel.2012.12.066
23.
Giusti
,
A.
,
Mastorakos
,
E.
,
Hassa
,
C.
,
Heinze
,
J.
,
Magens
,
E.
, and
Zedda
,
M.
,
2018
, “
Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061506
.10.1115/1.4038025
24.
Wang
,
H.
,
Xu
,
R.
,
Wang
,
K.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Brezinsky
,
K.
, and
Egolfopoulos
,
F. N.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—I: Evidence From Experiments, and Thermodynamic, Chemical Kinetic and Statistical Considerations
,”
Combust. Flame
,
193
, pp.
502
519
.10.1016/j.combustflame.2018.03.019
25.
Xu
,
R.
,
Wang
,
K.
,
Banerjee
,
S.
,
Shao
,
J.
,
Parise
,
T.
,
Zhu
,
Y.
,
Wang
,
S.
,
Movaghar
,
A.
,
Lee
,
D. J.
,
Zhao
,
R.
,
Han
,
X.
,
Gao
,
Y.
,
Lu
,
T.
,
Brezinsky
,
K.
,
Egolfopoulos
,
F. N.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Bowman
,
C. T.
, and
Wang
,
H.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—II: Reaction Kinetic Models of Jet and Rocket Fuels
,”
Combust. Flame
,
193
, pp.
520
537
.10.1016/j.combustflame.2018.03.021
26.
Giusti
,
A.
, and
Mastorakos
,
E.
,
2019
, “
Turbulent Combustion Modelling and Experiments: Recent Trends and Developments
,”
Flow, Turbul. Combust.
,
103
(
4
), pp.
847
869
.10.1007/s10494-019-00072-6
27.
Garmory
,
A.
, and
Mastorakos
,
E.
,
2015
, “
Numerical Simulation of Oxy-Fuel Jet Flames Using Unstructured LES–CMC
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1207
1214
.10.1016/j.proci.2014.05.032
28.
Giusti
,
A.
, and
Mastorakos
,
E.
,
2017
, “
Detailed Chemistry LES/CMC Simulation of a Swirling Ethanol Spray Flame Approaching Blow-Off
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2625
2632
.10.1016/j.proci.2016.06.035
29.
Rigopoulos
,
S.
, and
Jones
,
A.
,
2003
, “
A Hybrid CFD–Reaction Engineering Framework for Multiphase Reactor Modelling: Basic Concept and Application to Bubble Column Reactors
,”
Chem. Eng. Sci.
,
58
(
14
), pp.
3077
3089
.10.1016/S0009-2509(03)00179-9
30.
O'Brien
,
E. E.
, and
Jiang
,
T.
,
1991
, “
The Conditional Dissipation Rate of an Initially Binary Scalar in Homogeneous Turbulence
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
12
), pp.
3121
3123
.10.1063/1.858127
31.
Nehse
,
M.
,
Warnat
,
J.
, and
Chevalier
,
C.
,
1996
, “
Kinetic Modeling of the Oxidation of Large Aliphatic Hydrocarbons
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
773
780
.10.1016/S0082-0784(96)80286-4
32.
Dagaut
,
P.
, and
Cathonnet
,
M.
,
2006
, “
The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modeling
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
48
92
.10.1016/j.pecs.2005.10.003
33.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C.
,
2007
, “
USC Mech Version II—High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds
,” University of Southern California, Los Angeles, CA, accessed Sept. 18, 2020, http://ignis.usc.edu/USC_Mech_II.htm
34.
Wang
,
Y.
,
Raj
,
A.
, and
Chung
,
S. H.
,
2013
, “
A PAH Growth Mechanism and Synergistic Effect on PAH Formation in Counterflow Diffusion Flames
,”
Combust. Flame
,
160
(
9
), pp.
1667
1676
.10.1016/j.combustflame.2013.03.013
35.
Bolla
,
M.
,
Wright
,
Y. M.
,
Boulouchos
,
K.
,
Borghesi
,
G.
, and
Mastorakos
,
E.
,
2013
, “
Soot Formation Modeling of n-Heptane Sprays Under Diesel Engine Conditions Using the Conditional Moment Closure Approach
,”
Combust. Sci. Technol.
,
185
(
5
), pp.
766
793
.10.1080/00102202.2012.752362
36.
Leung
,
K. M.
,
Lindstedt
,
R. P.
, and
Jones
,
W. P.
,
1991
, “
A Simplified Reaction Mechanism for Soot Formation in Nonpremixed Flames
,”
Combust. Flame
,
87
(
3–4
), pp.
289
305
.10.1016/0010-2180(91)90114-Q
37.
Perini
,
F.
,
Galligani
,
E.
, and
Reitz
,
R. D.
,
2012
, “
An Analytical Jacobian Approach to Sparse Reaction Kinetics for Computationally Efficient Combustion Modeling With Large Reaction Mechanisms
,”
Energy Fuels
,
26
(
8
), pp.
4804
4822
.10.1021/ef300747n
38.
Brown
,
P. N.
, and
Hindmarsh
,
A. C.
,
1989
, “
Reduced Storage Matrix Methods in Stiff ODE Systems
,”
Appl. Math. Comput.
,
31
, pp.
40
91
.10.1016/0096-3003(89)90110-0
39.
Sirignano
,
M.
,
Kent
,
J.
, and
D'Anna
,
A.
,
2013
, “
Modeling Formation and Oxidation of Soot in Nonpremixed Flames
,”
Energy Fuels
,
27
(
4
), pp.
2303
2315
.10.1021/ef400057r
40.
Wang
,
Y.
, and
Chung
,
S. H.
,
2019
, “
Soot Formation in Laminar Counterflow Flames
,”
Prog. Energy Combust. Sci.
,
74
, pp.
152
238
.10.1016/j.pecs.2019.05.003
41.
Schneider
,
D.
,
Meier
,
U.
,
Quade
,
W.
,
Koopman
,
J.
,
Aumeier
,
T.
,
Langfeld
,
A.
,
Behrendt
,
T.
,
Hassa
,
C.
, and
Rackwitz
,
L.
,
2010
, “
A New Test Rig for Laser Optical Investigations of Lean Jet Engine Burners
,”
27th International Congress of the Aeronautical Sciences
(
ICAS 2010
),
Nice
,
France
, Sept.
19
24
.https://www.researchgate.net/publication/225021522_A_NEW_TEST_RIG_FOR_LASER_OPTICAL_INVESTIGATIONS_OF_LEAN_JET_ENGINE_BURNERS
42.
Freitag
,
S.
,
Behrendt
,
T.
,
Heinze
,
J.
,
Lange
,
L.
,
Meier
,
U.
,
Rackwitz
,
L.
, and
Hassa
,
C.
,
2011
, “
Study of an Airblast Atomizer Spray in a Lean Burn Aero-Engine Model Combustor at Engine Conditions
,”
24th European Conference on Liquid Atomization and Spray Systems
(
ILASS
),
Estoril, Portugal
, Sept.
5
7
.https://www.researchgate.net/publication/225022153_Study_of_an_Airblast_Atomizer_Spray_in_a_Lean_Burn_Aero-Engine_Model_Combustor_at_Engine_Conditions
43.
Meier
,
U.
,
Lange
,
L.
,
Heinze
,
J.
,
Hassa
,
C.
,
Sadig
,
S.
, and
Luff
,
D.
,
2015
, “
Optical Methods for Studies of Self-Excited Oscillations and the Effect of Dampers in a High Pressure Single Sector Combustor
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072505
.10.1115/1.4029355
44.
Lindstedt
,
R. P.
, and
Louloudi
,
S. A.
,
2005
, “
Joint-Scalar Transported PDF Modeling of Soot Formation and Oxidation
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
775
783
.10.1016/j.proci.2004.08.080
45.
El Helou
,
I.
,
Skiba
,
A. W.
,
Mastorakos
,
E.
, and
Sidey
,
J. A.
,
2019
, “
Investigation of the Effect of Dilution Air on Soot Production and Oxidation in a Lab Scale Rich-Quench-Lean (RQL) Burner
,”
AIAA
Paper No. 2019-1436.10.2514/6.2019-1436
46.
El Helou
,
I.
,
Skiba
,
A. W.
, and
Mastorakos
,
E.
,
2019
, “
Investigation of Soot Production and Oxidation in a Lab-Scale Rich-Quench-Lean (RQL) Burner Using in Situ Laser Diagnostics
,”
11th Mediterannean Combustion Symposium
,
Tenerife, Spain
, June 16–20, Paper No. 157.
47.
El Helou
,
I.
,
Skiba
,
A. W.
, and
Mastorakos
,
E.
,
2020
, “
Experimental Investigation of Soot Production and Oxidation in a Lab-Scale Rich–Quench–Lean (RQL) Burner
,”
Flow, Turbul. Combust.
, pp.
1
23
.10.1007/s10494-020-00113-5
48.
Gkantonas
,
S.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2019
, “
Incompletely Stirred Reactor Network Modelling for Soot Emissions Prediction in Aero-Engine Combustors
,”
International Workshop on Clean Combustion: Principles and Applications
,
Darmstadt, Germany
, Sept.
25
26
.10.17863/cam.44973
49.
Peter Geigle
,
K.
,
Hadef
,
R.
, and
Meier
,
W.
,
2014
, “
Soot Formation and Flame Characterization of an Aero-Engine Model Combustor Burning Ethylene at Elevated Pressure
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021505
.10.1115/1.4025374
50.
Gkantonas
,
S.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2020
, “
Incompletely Stirred Reactor Network Modeling of a Model Gas Turbine Combustor
,”
AIAA
Paper No. 2020-2087.10.2514/6.2020-2087
51.
Chowdhury
,
S.
,
Boyette
,
W. R.
, and
Roberts
,
W. L.
,
2017
, “
Time-Averaged Probability Density Functions of Soot Nanoparticles Along the Centerline of a Piloted Turbulent Diffusion Flame Using a Scanning Mobility Particle Sizer
,”
J. Aerosol Sci.
,
106
, pp.
56
67
.10.1016/j.jaerosci.2016.10.012
52.
De Falco
,
G.
,
El Helou
,
I.
,
de Oliveira
,
P. M.
,
Yuan
,
R.
,
D'Anna
,
A.
, and
Mastorakos
,
E.
,
2020
, “
Soot Particle Size Distribution Measurements in a Turbulent Ethylene Swirl Flame
,”
Proc. Combust Inst.
, Epub.10.1016/j.proci.2020.06.212
53.
Garmory
,
A.
, and
Mastorakos
,
E.
,
2011
, “
Capturing Localised Extinction in Sandia Flame F With LES–CMC
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1673
1680
.10.1016/j.proci.2010.06.065
You do not currently have access to this content.