Abstract

This paper proposes a systematic approach to design control laws for a turboprop engine. The proposed approach includes interactions decoupling and control laws design based on linear matrix inequality (LMI). First, since the main objective of the turboprop engine control system is to ensure propeller-absorbed power at a constant propeller speed, the linear model of a turboprop engine can be linearized into a two-input two-output (TITO) plants, and there exist the interactions between two control loops. Because inverted decoupling can well retain the dynamic characteristics of the original system, it is used to decouple the interactions so that the TITO plant can be divided into two single-input single-output plants, that is, gas-generator shaft speed is controlled by fuel flowrate and power turbine shaft speed is controlled by blade angle. Then, the control laws are designed separately for each control loop by solving the LMI group derived from static output feedback (SOF) and regional pole placement. Finally, the proposed approach is implemented on a two-spool turboprop engine (TSTPE) integrated model. The simulation results show that there exist strong interactions between two control loops of TSTPE, applying inverted decoupling to decouple these interactions is effective, and the gas-generator shaft speed and the power turbine speed can track their commands with appropriate performance by controlling the fuel flowrate and blade angle under the action of the designed control laws and inverted decoupling.

References

1.
Zhou
,
H. H.
,
2013
, “
The Development Prospect of Turbo-Propeller Engines
,”
Aeronaut. Sci. Technol.
,
24
(
1
), pp.
18
22
.www.cnki.com.cn/Article/CJFDTOTAL-HKKX201301006.htm
2.
Wu
,
T.
,
2008
, “
European Eagle-A Rounded Analysis of the European Large Transport Aircraft A400M
,”
Mod. Weaponry
,
10
, pp.
18
30
.www.cnki.com.cn/Article/CJFDTotal-XDBQ200810008.htm
3.
Chen
,
H. R.
, and
Wang
,
X.
,
2016
, “
Development Turboprop Engine Control Technology in Western Countries
,”
Aeroengine
,
42
(
6
), pp.
9
17
.10.13477/j.cnki.aeroengine.2016.06.001
4.
Keck
,
M. F.
,
Schwent
,
G. V.
,
Fredlake
,
J. J.
, and
Minshall
,
B. J.
,
1968
, “
A Turboprop Engine Advanced Adaptive Fuel Control With a High Contamination Tolerance
,”
ASME
Paper No. 68-GT-45.10.1115/68-GT-45
5.
Badger
,
M.
,
Julien
,
A.
,
LeBlanc
,
A. D.
,
Moustapha
,
S. H.
,
Prabhu
,
A.
, and
Smailys
,
A. A.
,
1993
, “
The PT6 Engine: 30 Years of Gas Turbine Technology Evolution
,”
ASME J. Eng. Gas Turbines Power
,
116
(
2
), pp.
322
330
.10.1115/1.2906823
6.
Hosking
,
E.
,
Kenny
,
D. P.
,
McCormick
,
R. I.
,
Moustapha
,
S. H.
,
Sampath
,
P.
, and
Smailys
,
A. A.
,
1998
, “
The PW100 Engine: 20 Years of Gas Turbine Technology Evolution
,”
RTO ATV Symposium on Design Principles and Methods for Aircraft Gas Turbine Engines
, Toulouse, France, May 11–15, pp.
41
49
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.600.8607&rep=rep1&type=pdf
7.
Považan
,
J.
,
Andoga
,
R.
,
Főző
,
L.
,
Judičák
,
J.
, and
Madarász
,
L.
,
2012
, “
Introduction to Advanced Modeling and Control of Turbo-Prop Engines
,”
IEEE 16th International Conference on Intelligent Engineering Systems
, Lisbon, Portugal, June 13–15, pp.
271
277
.
8.
LeBrun
,
C.
,
Godoy
,
E.
,
Beauvois
,
D.
,
Liacu
,
B.
, and
Noguera
,
R.
,
2015
, “
Control Laws Design of a Turboprop Engine
,”
Appl. Mech. Mater.
,
704
, pp.
362
367
.10.4028/www.scientific.net/AMM.704.362
9.
LeBrun
,
C.
,
Godoy
,
E.
,
Beauvois
,
D.
,
Liacu
,
B.
, and
Noguera
,
R.
,
2015
, “
Coupling Analysis and Control of a Turboprop Engine
,”
IEEE
12th International Conference on Informatics in Control, Automation and Robotics, Colmar, France, July 21–23, pp.
420
427
.https://ieeexplore.ieee.org/document/7350502
10.
Lee
,
J.
,
Cho
,
W.
, and
Edgar
,
T. F.
,
1998
, “
Multiloop PI Controller Tuning for Interacting Multivariable Processes
,”
Comput. Chem. Eng.
,
22
(
11
), pp.
1711
1723
.10.1016/S0098-1354(98)00230-0
11.
Waller
,
K. V. T.
,
1974
, “
Decoupling in Distillation
,”
AIChE J.
,
20
(
3
), pp.
592
594
.10.1002/aic.690200321
12.
Jung
,
J.
, and
Nam
,
K.
,
1999
, “
A Dynamic Decoupling Control Scheme for High-Speed Operation of Induction Motors
,”
IEEE Trans. Ind. Electron.
,
46
(
1
), pp.
100
110
.10.1109/41.744397
13.
Zheng
,
Q.
,
Chen
,
Z.
, and
Gao
,
Z. Q.
,
2009
, “
A Practical Approach to Disturbance Decoupling Control
,”
Control Eng. Pract.
,
17
(
9
), pp.
1016
1025
.10.1016/j.conengprac.2009.03.005
14.
Zheng
,
J.
,
Guo
,
G.
, and
Wang
,
Y.
,
2004
, “
Feedforward Decoupling Control Design for Dual-Actuator System in Hard Disk Drives
,”
IEEE Trans. Magn.
,
40
(
4
), pp.
2080
2082
.10.1109/TMAG.2004.832483
15.
Chen
,
P. Y.
, and
Zhang
,
W. D.
,
2007
, “
Improvement on an Inverted Decoupling Technique for a Class of Stable Linear Multivariable Processes
,”
ISA Trans.
,
46
(
2
), pp.
199
210
.10.1016/j.isatra.2006.09.002
16.
Gagnon
,
E.
,
Pomerleau
,
A.
, and
Desbiens
,
A.
,
1998
, “
Simplified, Ideal or Inverted Decoupling?
,”
ISA Trans.
,
37
(
4
), pp.
265
276
.10.1016/S0019-0578(98)00023-8
17.
Abdelaziz
,
T. H. S.
,
2015
, “
Pole Placement for Single-Input Linear System by Proportional-Derivative State Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
4
), p.
041015
.10.1115/1.4028713
18.
Jiang
,
C. S.
,
Wu
,
Q. X.
,
Chen
,
W. H.
, and
Wang
,
C.
,
2005
,
Modern Robust Control Foundation
,
Harbin Institute of Technology Press
,
Harbin, China
, Chap.
1
.
19.
Kucera
,
V.
, and
Souza
,
C. E. D.
,
1995
, “
A Necessary and Sufficient Condition for Output Feedback Stabilizability
,”
Automatica
,
31
(
9
), pp.
1357
1359
.10.1016/0005-1098(95)00048-2
20.
Crusius
,
C. A. R.
, and
Trofino
,
A.
,
1999
, “
Sufficient LMI Conditions for Output Feedback Control Problems
,”
IEEE Trans. Autom. Control
,
44
(
5
), pp.
1053
1057
.10.1109/9.763227
21.
Cao
,
Y.
,
Lam
,
J.
, and
Sun
,
Y.
,
1998
, “
Static Output Feedback Stabilization: An ILMI Approach
,”
Automatica
,
34
(
12
), pp.
1641
1645
.10.1016/S0005-1098(98)80021-6
22.
Zheng
,
F.
,
Wang
,
Q. G.
, and
Lee
,
T. H.
,
2002
, “
On the Design of Multivariable PID Controllers Via LMI Approach
,”
Automatica
,
38
(
3
), pp.
517
526
.10.1016/S0005-1098(01)00237-0
23.
Wang
,
X.
,
Sun
,
Y. X.
,
Zheng
,
T. J.
, and
Tan
,
D. L.
,
2008
, “
Static Output Feedback-Based PI Control for Aeroengines Using Linear Matrix Inequality
,”
AIAA
Paper No. 2008-4581.10.2514/6.2008-4581
24.
He
,
A.
,
2011
, “
The LMI-Based Intelligent Fault-Tolerant Control for Aircraft Engine
,” Ph.D. thesis, Beihang University, Beijing, China.
25.
Chapman
,
J. W.
,
May
,
R. D.
,
Lavelle
,
T. M.
,
Litt
,
J. S.
, and
Guo
,
T. H.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic System (T-MATS) User's Guide
,” Vantage Partners, LLC, Cleveland, OH, Report No.
NASA/TM-2014-216638
. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012486.pdf
26.
Chen
,
H. R.
, and
Wang
,
X.
,
2017
, “
A Modeling Method of Propeller Based on the Propeller Component Characteristic
,”
J. Aerosp. Power
,
32
(
10
), pp.
2526
2535
.10.13224/j.cnki.jasp.2017.10.027
27.
Visser
,
W. P.
, and
Broomhead
,
M. J.
,
2000
, “
GSP, A Generic Object-Oriented Gas Turbine Simulation Environment
,”
ASME
Paper No. 2000-GT-0002.10.1115/2000-GT-0002
28.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls: Design, System Analysis, and Health Monitoring
,
American Institute of Aeronautics and Astronautics Press
,
Reston, VA
, Chap.
2
.
You do not currently have access to this content.