Abstract

Internal combustion Rankine cycle (ICRC) concept implements oxy-fuel combustion, direct water injection (DWI), and waster heat recovery (WHR) into traditional Otto or diesel cycle to realize high thermal efficiency and low emission powertrain. In order to support ICRC realization, this paper is dedicated to investigate the feasibility of implementing oxy-fuel combustion into diffusion combustion which provides fundamental information for future compression ignition (CI)-ICRC engine. The prototype oxy-fuel diffusion combustion engine test bench is established based on a retrofitted diesel engine, and the O2/CO2 mixture intake system, high-pressure common rail fuel injection system, and high-performance electronic controller are designed and installed within engine test bench to investigate the combustion and emission characteristics under different intake oxygen fractions (OF), fuel injection durations, and fuel injection timing. The optimum intake OF and fuel injection strategies are acquired within the selected experimental conditions, a 41.1% brake thermal efficiency (BTE), and 1.2% coefficient of variation (CoV) is achieved utilizing 55% intake OF, 0.7 ms fuel injection duration and 352 °CA (after exchange top dead center (TDC)) fuel injection timing. The oxy-fuel diffusion combustion proved to be a feasible solution for simultaneously reduction in NOX and particulate emissions, and NOX emissions lower than 90 × 10−6 with particulate matters (PM) around 0.1 filter smoke number (FSN) is observed during engine bench testing. The result of this study provides fundamental information for future CI-ICRC prototype engine establishment and optimization, which also could be utilized as reference guidance for potential industrialization of internal combustion engine (ICE) with oxy-fuel combustion mode.

References

1.
Kalghatgi
,
G.
,
2018
, “
Is It Really the End of Internal Combustion Engines and Petroleum in Transport?
,”
Appl. Energy
,
225
, pp.
965
974
.10.1016/j.apenergy.2018.05.076
2.
Reitz
,
R. D.
,
2015
, “
Grand Challenges in Engine and Automotive Engineering
,”
Front. Mech. Eng.
,
1
, p.
1
.10.3389/fmech.2015.00001
3.
Pei
,
P.
, and
Lu
,
Y.
,
2013
, “
Energy-Saving Technologies of the Unconventional Thermal Cycle Internal Combustion Engines
,”
J. Automot. Saf. Energy
,
4
(
1
), pp.
1
15
.10.3969/j.issn.1674-8484.2013.01.001
4.
Anderson
,
R. E.
,
Baxter
,
E.
,
Doyle
,
S. E.
, and Viteri, F. ,
2003
, “
A Demonstrated 20 MWt Gas Generator for a Clean Steam Power Plant
,”
28th International Technical Conference on Coal Utilization and Fuel Systems
, Clearwater, FL, Mar. 10–13, pp.
1
13
.https://www.researchgate.net/publication/228715983_A_Demonstrated_20_MWt_Gas_Generator_for_a_Clean_Steam_Power_Plant
5.
Bilger
,
R. W.
,
1999
, “
Zero Release Combustion Technologies and the Oxygen Economy
,” Fifth International Conference on Technologies and Combustion for a Clean Environment
, Lisbon, Portugal, Jul. 12–15, pp.
1039
1046
.
6.
Buhre
,
B. J. P.
,
Elliott
,
L. K.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
,
2005
, “
Oxy-Fuel Combustion Technology for Coal-fired Power Generation
,”
Prog. Energy Combust. Sci.
,
31
(
4
), pp.
283
307
.10.1016/j.pecs.2005.07.001
7.
Scheffknecht
,
G.
,
Al-Makhadmeh
,
L.
,
Schnell
,
U.
, and
Maier
,
J.
,
2011
, “
Oxy-Fuel Coal Combustion—A Review of the Current State-of-the-Art
,”
Int. J. Greenhouse Gas Control
,
5
, pp.
S16
S35
.10.1016/j.ijggc.2011.05.020
8.
Leung
,
D. Y. C.
,
Caramanna
,
G.
, and
Maroto-Valer
,
M. M.
,
2014
, “
An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
426
443
.10.1016/j.rser.2014.07.093
9.
Toftegaard
,
M. B.
,
Brix
,
J.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Jensen
,
A. D.
,
2010
, “
Oxy-Fuel Combustion of Solid Fuels
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
581
625
.10.1016/j.pecs.2010.02.001
10.
Abraham
,
B. M.
,
Asbury
,
J. G.
,
Lynch
,
E. P.
, and
Teotia
,
A.
,
1982
, “
Coal-Oxygen Process Provides CO2 for Enhanced Recovery
,”
Oil Gas J.
,
80
(
11
), pp.
68
70
.https://www.osti.gov/biblio/5173184-coal-oxygen-process-provides-co-sub-enhanced-recovery
11.
Anderson
,
R. E.
,
Baxter
,
E.
, and
Doyle
,
S. E.
,
2003
, “
Power Generation With 100% Carbon Capture and Sequestration
,”
Second Annual Conference on Carbon Sequestration
, Alexandria, VA, May 5–8.
12.
Anderson
,
R. E.
,
Doyle
,
S. E.
, and
Pronske
,
K. L.
,
2004
, “
Demonstration and Commercialization of Zero-Emission Power Plants
,”
29th International Technical Conference on Coal Utilization and Fuel Systems
, Clearwater, FL, Apr. 18–22, pp.
1
11
.https://www.researchgate.net/publication/228974521_Demonstration_and_commercialization_of_zero-emission_power_plants
13.
Hustad
,
C. W.
,
Trondstad
,
I.
, and
Anderson
,
R. E.
,
2005
, “
Optimization of Thermodynamically Efficient Nominal 40 MW Zero Emission Pilot and Demonstration Power Plant in Norway
,”
ASME
Paper No. GT2005-68640.10.1115/GT2005-68640
14.
Wu
,
Z.
,
Fu
,
L.
,
Gao
,
Y.
,
Yu
,
X.
,
Deng
,
J.
, and
Li
,
L.
,.
2016
, “
Thermal Efficiency Boundary Analysis of an Internal Combustion Rankine Cycle Engine
,”
Energy
,
94
, pp.
38
49
. 10.1016/j.energy.2015.10.099
15.
Kang
,
Z.
,
Zhang
,
Z.
,
Deng
,
J.
,
Li
,
L.
, and
Wu
,
Z.
,.
2019
, “
Experimental Research of High Temperature and High Pressure Water Jet Characteristics in ICRC Engine Relevant Conditions
,”
Energies
,
12
(
9
), p.
1763
.10.3390/en12091763
16.
Fu
,
L.
,
Yu
,
X.
,
Deng
,
J.
, and Wu, Z. ,
2013
, “
Development of Internal Combustion Rankine Cycle Engine Test System
,”
Chin. Internal Combust. Engine Eng.
,
6
, pp.
87
92
.https://www.researchgate.net/publication/290160100_Development_of_internal_combustion_Rankine_cycle_engine_test_system
17.
Yu
,
X.
,
Fu
,
L.
,
Deng
,
J.
, and Wu, Z. ,
2014
, “
Influence of Engine Load on Thermoefficiency of Internal Combustion Rankine Engine
,”
J. Combust. Sci. Technol.
,
20
(
6
), pp.
492
497
.10.11715/rskxjs.R201403048
18.
Kang
,
Z.
,
Wu
,
Z.
,
Fu
,
L.
,
Deng
,
J.
,
Hu
,
Z.
, and
Li
,
L.
,
2018
, “
Experimental Study of Ion Current Signals and Characteristics in an Internal Combustion Rankine Cycle Engine Based on Water Injection
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
111506
.10.1115/1.4040288
19.
Wu
,
Z-J.
,
Yu
,
X.
,
Fu
,
L-Z.
,
Deng
,
J.
, and
Li
,
L-G.
,
2014
, “
Experimental Study of the Effect of Water Injection on the Cycle Performance of an Internal-Combustion Rankine Cycle Engine
,”
Proc. Inst. Mech. Eng., Part D
,
228
(
5
), pp.
580
588
.10.1177/0954407013511069
20.
Fu
,
L.
,
Wu
,
Z.
,
Li
,
L.
, and Yu, X. ,
2014
, “
Effect of Water Injection Temperature on Characteristics of Combustion and Emissions for Internal Combustion Rankine Cycle Engine
,”
SAE
Paper No. 2014-01-2600. 10.4271/2014-01-2600
21.
Fu
,
L.
,
Wu
,
Z.
,
Yu
,
X.
,
Deng
,
J.
,
Hu
,
Z.
, and
Li
,
L.
,.
2015
, “
Experimental Investigation of Combustion and Emission Characteristics for Internal Combustion Rankine Cycle Engine Under Different Water Injection Laws
,”
Energy Procedia
,
66
, pp.
89
92
.10.1016/j.egypro.2015.02.047
22.
Bilger
,
R. W.
, and
Zhijun
,
W.
,
2009
, “
Carbon Capture for Automobiles Using Internal Combustion Rankine Cycle Engines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
034502
.10.1115/1.3077657
23.
Wu
,
Z.-J.
,
Yu
,
X.
,
Fu
,
L.-Z.
,
Deng
,
J.
,
Hu
,
Z.-J.
, and
Li
,
L.-G.
,
2014
, “
A High Efficiency Oxy-Fuel Internal Combustion Engine Cycle With Water Direct Injection for Waste Heat Recovery
,”
Energy
,
70
, pp.
110
120
.10.1016/j.energy.2014.03.095
24.
Yu
,
X.
,
2014
, “
Optimization Study on the Combustion Process of Internal Combustion Rankine Cycle Engine With Ultra-Low Emissions
,” Doctoral thesis,
Tongji University
, Shanghai, China.
25.
Kang
,
Z.
,
Fu
,
L.
, and
Deng
,
J.
,
2017
, “
Experimental Study of Knock Control in an Internal Combustion Rankine Cycle Engine
,”
J. Tongji Univ. (Nat. Sci.)
, 45(7), pp.
1030
1036
.10.11908/j.issn.0253-374x.2017.07.013
26.
Wu
,
Z.
,
Kang
,
Z.
,
Deng
,
J.
,
Hu
,
Z.
, and
Li
,
L.
,
2016
, “
Effect of Oxygen Content on n-Heptane Auto-Ignition Characteristics in a HCCI Engine
,”
Appl. Energy
,
184
, pp.
594
604
.10.1016/j.apenergy.2016.10.050
27.
Kang
,
Z.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Deng
,
J.
,
Hu
,
Z.
, and
Li
,
L.
,
2017
, “
Study of the Combustion Characteristics of a HCCI Engine Coupled With Oxy-Fuel Combustion Mode
,”
SAE Int. J. Engines
,
10
(
3
), pp.
908
916
.10.4271/2017-01-0649
28.
Kang
,
Z.
,
Chen
,
S.
,
Wu
,
Z.
,
Deng
,
J.
,
Hu
,
Z.
, and
Li
,
L.
,
2018
, “
Simulation Study of Water Injection Strategy in Improving Cycle Efficiency Based on a Novel Compression Ignition Oxy-Fuel Combustion Engine
,”
SAE Int. J. Engines
,
11
(
6
), pp.
935
945
.10.4271/2018-01-0894
29.
Yu
,
X.
,
Wu
,
Z.
,
Fu
,
L.
, Deng, J. , Hu, Z. , and Li, L. ,
2013
, “
Study of Combustion Characteristics of a Quasi Internal Combustion Rankine Cycle Engine
,”
SAE
Paper No. 2013-01-2698.10.4271/2013-01-2698
30.
Yao
,
A.
,
Luo
,
Z.
,
Yao
,
C.
, and Xu, H. ,
2013
, “
Experimental Study of the Failure Modes of the Methanol-Ignition Engine Knock
,”
Chin. J. Mech. Eng.
,
49
(
4
), pp.
122
127
.10.3901/JME.2013.04.122
31.
Chen
,
H.
,
Zuo
,
C.
,
Ding
,
H.
,
Wang
,
Z.
, and
Wang
,
D.
,
2013
, “
Numerical Simulation on Combustion Processes of a Diesel Engine Under O2/CO2 Atmosphere
,”
HKIE Trans.
,
20
(
3
), pp.
157
163
.10.1080/1023697X.2013.812374
32.
Liu
,
Y.
,
Zhao
,
T.
,
Li
,
Z.
,
Wang
,
F.
,
Yao
,
S.
,
Liang
,
X.
, and
He
,
X.
,
2019
, “
Simulation and Experiment of Auto-Ignition Characteristics for Diesel Fuel in O2/CO2 Atmosphere
,”
Trans. CSICE
,
43
(
1
), pp.
1
422
.10.1139/tcsme-2017-0120
33.
Karvountzis-Kontakiotis
,
A.
, and
Ntziachristos
,
L.
,
2016
, “
Improvement of NO and CO Predictions for a Homogeneous Combustion SI Engine Using a Novel Emissions Model
,”
Appl. Energy
,
162
, pp.
172
182
.10.1016/j.apenergy.2015.10.088
34.
Song
,
Y.
,
Zou
,
C.
,
He
,
Y.
, and
Zheng
,
C.
,
2015
, “
The Chemical Mechanism of the Effect of CO2 on the Temperature in Methane Oxy-Fuel Combustion
,”
Int. J. Heat Mass Transfer
,
86
, pp.
622
628
.10.1016/j.ijheatmasstransfer.2015.03.008
35.
Dec
,
J. E.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,”
SAE
Paper No. 970873.10.4271/970873
36.
Dec
,
J. E.
, and
Espey
,
C.
,
1998
, “
Chemiluminescence Imaging of Auto Ignition in a DI Diesel Engine
,”
SAE
Paper No. 982685. 10.4271/982685
37.
Yanai
,
T.
,
Aversa
,
C.
,
Dev
,
S.
,
Reader
,
G.
, and
Zheng
,
M.
,.
2016
, “
Investigation of Fuel Injection Strategies for Direct Injection of Neat n-Butanol in a Compression Ignition Engine
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1512
1525
.10.4271/2016-01-0724
You do not currently have access to this content.