Abstract

Nonsynchronous vibrations are a difficult problem to address for turbomachines due to the complex nature of the forcing. Such vibrations can be caused by vortex shedding, flow instabilities, stall cells, or flutter. Testing a design with such excitations can be difficult in practice due to the required forcing. This work demonstrates an experimental excitation method using pulsed air jet excitation to create nonsynchronous vibrations in engine hardware rotating at nominal design speeds. Experimental runs were conducted to excite a number of engine orders (EOs). Blade tip timing was used to measure the blade response without interfering with the blade dynamics. The bladed disk was held at a constant rotational speed while the air jets were pulsed at a sweeping frequency to simulate rotating forcing. Computational models of the physical system were constructed using parametric reduced order models that incorporate the effects of rotational speed and small mistuning. The computational model was used in simulations that mimic the experiment; the forcing was swept across the blades while being pulsed. This results in a system response that cannot be captured using traditional harmonic analyses. The computational and experimental datasets were compared through mistuning values, amplitudes, and the nodal diameter (ND) content in the system response.

References

1.
Kelley
,
C.
, and
Kauffman
,
J.
,
2019
, “
Effect of Switching Impulse on Piezoelectric-Based Vibration Reduction With Multiple Patches
,”
ASME
Paper No. GT2019-91832.10.1115/GT2019-91832
2.
Lopp
,
G.
, and
Kauffman
,
J.
,
2018
, “
An Experimental Study of Resonance Frequency Detuning Applied to Blade Mistuning
,”
ASME
Paper No. GT2018-76834.10.1115/GT2018-76834
3.
Mabilia
,
A.
,
Gibert
,
C.
,
Thouverez
,
F.
,
De Jaeghere
,
E.
,
Sanchez
,
L.
, and
Giovannoni
,
L.
,
2019
, “
Modal Testing of a Full-Scale Rotating Woven Composite Fan Using Piezoelectric Excitation
,” Proceedings of the Tenth International Conference on Rotor Dynamics (
IFToMM
),
K. L.
Cavalca
and
H. I.
Weber
, eds.,
Rio de Janeiro, Brazil
,
Sept. 23–27
, pp.
291
305
.10.1007/978-3-319-99270-9_21
4.
Mumcu
,
A.
,
Keller
,
C.
,
Hurfar
,
C. M.
, and
Seume
,
J. R.
,
2016
, “
An Acoustic Excitation System for the Generation of Turbomachinery Specific Sound Fields—Part I: Design and Methodology
,”
ASME
Paper No. GT2016-56020.10.1115/GT2016-56020
5.
Hurfar
,
C. M.
,
Keller
,
C.
,
Mumcu
,
A.
, and
Seume
,
J. R.
,
2016
, “
An Acoustic Excitation System for the Generation of Turbomachinery Specific Sound Fields—Part II: Experimental Verification
,”
ASME
Paper No. GT2016-56969.10.1115/GT2016-56969
6.
Freund
,
O.
,
Bartelt
,
M.
,
Mittelbach
,
M.
,
Montgomery
,
M.
,
Vogt
,
D. M.
, and
Seume
,
J. R.
,
2013
, “
Impact of the Flow on an Acoustic Excitation System for Aeroelastic Studies
,”
ASME J. Turbomach.
,
135
(
3
), p.
031033
.10.1115/1.4007511
7.
Provenza
,
A. J.
, and
Duffy
,
K. P.
,
2010
, “
Experimental Methodology for Determining Turbomachinery Blade Damping Using Magnetic Bearing Excitation and Non-Contacting Optical Measurements
,”
ASME
Paper No. GT2010-22093.10.1115/GT2010-22093
8.
Firrone
,
C. M.
, and
Berruti
,
T.
,
2012
, “
An Electromagnetic System for the Non-Contact Excitation of Bladed Disks
,”
Exp. Mech.
,
52
(
5
), pp.
447
459
.10.1007/s11340-011-9504-1
9.
Truman
,
J. C.
,
Martin
,
J. R.
, and
Klint
,
R. V.
,
1961
, “
Pulsed-Air Vibration Technique for Testing High-Performance Turbomachinery Blading
,”
Exp. Mech.
,
1
(
6
), pp.
201
205
.10.1007/BF02323893
10.
Piraccini
,
M.
,
Di Maio
,
D.
, and
Di Sante
,
R.
,
2016
, “
Nonlinear Modal Testing Performed by Pulsed-Air Jet Excitation System
,”
Conference Proceedings of the Society for Experimental Mechanics
,
Orlando, FL
,
Jan. 25–28
, pp.
155
170
.10.1007/978-3-319-29739-2_15
11.
D'Souza
,
K.
,
Kurstak
,
E.
,
Ruff
,
K.
, and
Dunn
,
M. G.
,
2020
, “
A New Experimental Facility for Characterizing Bladed Disk Dynamics at Design Speed
,”
AIAA J.
,
58
(
6
), ePub.10.2514/1.J058682
12.
Nichol
,
K. L.
,
2003
, “
Assessment of Current Turbine Engine High Cycle Fatigue Test Methods
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
760
765
.10.1115/1.1423913
13.
Procházka
,
P.
, and
Vaněk
,
F.
,
2012
, “
Non-Contact Methods of Sensing Vibrations of Turbine Blades
,”
Tenth International Conference on Vibrations in Rotating Machinery
,
London, UK
,
Sept. 11–13
, pp.
221
232
.10.1533/9780857094537.4.221
14.
Jamia
,
N.
,
Friswell
,
M. I.
,
El-Borgi
,
S.
, and
Rajendran
,
P.
,
2019
, “
Modelling and Experimental Validation of Active and Passive Eddy Current Sensors for Blade Tip Timing
,”
Sens. Actuators A
,
285
, pp.
98
110
.10.1016/j.sna.2018.10.034
15.
Zhang
,
J.
,
Duan
,
F.
,
Niu
,
G.
,
Jiang
,
J.
, and
Li
,
J.
,
2017
, “
A Blade Tip Timing Method Based on a Microwave Sensor
,”
Sensors
,
17
(
5
), p.
1097
.10.3390/s17051097
16.
García
,
I.
,
Beloki
,
J.
,
Zubia
,
J.
,
Aldabaldetreku
,
G.
,
Illarramendi
,
M. A.
, and
Jiménez
,
F.
,
2013
, “
An Optical Fiber Bundle Sensor for Tip Clearance and Tip Timing Measurements in a Turbine Rig
,”
Sensors
,
13
(
6
), pp.
7385
7398
.10.3390/s130607385
17.
Gallego-Garrido
,
J.
,
Dimitriadis
,
G.
, and
Wright
,
J. R.
,
2007
, “
A Class of Methods for the Analysis of Blade Tip Timing Data From Bladed Assemblies Undergoing Simultaneous Resonances—Part I: Theoretical Development
,”
Int. J. Rotating Mach.
,
2007
, pp.
1
11
.10.1155/2007/27247
18.
Gallego-Garrido
,
J.
,
Dimitriadis
,
G.
,
Carrington
,
I. B.
, and
Wright
,
J. R.
,
2007
, “
A Class of Methods for the Analysis of Blade Tip Timing Data From Bladed Assemblies Undergoing Simultaneous Resonances—Part II: Experimental Validation
,”
Int. J. Rotating Mach.
,
2007
, pp.
1
10
.10.1155/2007/73624
19.
Bastami
,
A. R.
,
Safarpour
,
P.
,
Mikaeily
,
A.
, and
Mohammadi
,
M.
,
2018
, “
Identification of Asynchronous Blade Vibration Parameters by Linear Regression of Blade Tip Timing Data
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072506
.10.1115/1.4038880
20.
Heath
,
S.
, and
Imregun
,
M.
,
1998
, “
A Survey of Blade Tip-Timing Measurement Techniques for Turbomachinery Vibration
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
784
791
.10.1115/1.2818468
21.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
22.
Schwerdt
,
L.
,
Willeke
,
S.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2019
, “
Reduced-Order Modeling of Bladed Disks Considering Small Mistuning the Disk Sectors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
7
.10.1115/1.4041071
23.
Pourkiaee
,
S.
, and
Zucca
,
S.
,
2019
, “
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011031
.10.1115/1.4041653
24.
Tien
,
M.-H.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2018
, “
Generalized Bilinear Amplitude Approximation and X-Xr for Modeling Cyclically Symmetric Structures With Cracks
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041012
.10.1115/1.4039296
25.
Tien
,
M.
,
Hu
,
T.
, and
D'Souza
,
K.
,
2019
, “
Statistical Analysis of the Nonlinear Response of Bladed Disks With Mistuning and Cracks
,”
AIAA J.
,
57
(
11
), pp.
4966
4977
.10.2514/1.J058190
26.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2019
, “
A Statistical Characterization of the Effects and Interactions of Small and Large Mistuning on Multistage Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041015
.10.1115/1.4045023
27.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2018
, “
Multistage Blisk and Large Mistuning Modeling Using Fourier Constraint Modes and PRIME
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), pp.
072505
072515
.10.1115/1.4038613
28.
Kurstak
,
E.
,
Wilber
,
R.
, and
D'Souza
,
K.
,
2019
, “
Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051018
.10.1115/1.4041204
29.
Sternchüss
,
A.
,
2010
, “
Multi-Level Parametric Reduced Models of Rotating Bladed Disk Assemblies
,”
Ph.D. thesis
,
Ecole Centrale Paris, Paris, France
.https://tel.archives-ouvertes.fr/tel-00366252v2/document
30.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
31.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2020
, “
Experimental Investigation of Mistuning and Damping Characteristics of a Bladed Disk at Operational Speed Under Synchronous Vibration
,”
AIAA
Paper No. 2020-1442.10.2514/6.2020-1442
32.
Fan
,
C.
,
Russhard
,
P.
,
Wang
,
A.
,
Chen
,
Y.
, and
Dong
,
W.
,
2018
, “
Analysis of Blade Tip Timing Data From Fan Blades With Synchronous and Non-Synchronous Vibration
,”
J. Phys.: Conf. Ser.
,
1149
, p.
012014
.10.1088/1742-6596/1149/1/012014
You do not currently have access to this content.