Abstract

The ever increasing performance requirements of modern aeroengines necessitate the development of effective ways to improve efficiency and reduce losses. Casing temperature control is particularly critical from this point of view, since thermal expansion directly affects the blade tip clearance and thus the associated leakages. To limit the turbine tip flows, active clearance control (ACC) systems have been implemented over the last decades. These systems are usually based upon impingement cooling, generated by a series of perforated manifolds enclosing the turbine casing. When dealing with aeroengine low pressure turbines, the current trend in increasing the engine bypass ratio, so as to enhance the system propulsive efficiency, pushes the limits of ACC traditional design performance. The reduction of the pressure head at the ACC system inlet requires lower nozzle-to-target distances as well as denser impingement arrays to compensate the reduction of the jets' Reynolds number. Literature correlations for the impingement heat transfer coefficient estimation are then out of their confidence range and also RANS numerical approaches appear not suitable for future ACC designs. In this work, methodologies for the development of accurate and reliable tools to determine the heat transfer characteristics of low pressure ACC systems are presented. More precisely, this paper describes a custom designed finite difference procedure capable of solving the inverse conduction problem on the target plate of a test sample. The methodology was successfully applied to an experimental setup for the measurement of the thermal loads on a target plate of a representative low pressure ACC impinging system. The experimental outcomes are then used to validate a suitable numerical approach. Results show that RANS model is not able to mimic the experimental trends, while scale-resolving turbulence models provide a good reconstruction of the experimental evidences, thus allowing to obtain a correct interpretation of flow and thermal phenomena for ACC systems.

References

1.
Andreini
,
A.
, and
Da Soghe
,
R.
,
2012
, “
Numerical Characterization of Aerodynamic Losses of Jet Arrays for Gas Turbine Applications
,”
ASME J. Eng. Gas Turbine Power
,
134
(
5
), p.
052504
. 10.1115/1.4005216
2.
Da Soghe
,
R.
, and
Andreini
,
A.
,
2013
, “
Numerical Characterization of Pressure Drop for Turbine Casing Impingement Cooling System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031017
.10.1115/1.4007506
3.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2013
, “
Experimental and Numerical Analysis of Multiple Impingement Jet Arrays for an Active Clearance Control System
,”
ASME J. Turbomach.
,
135
(
3
), p.
031016
.10.1115/1.4007481
4.
Da Soghe
,
R.
,
Maiuolo
,
F.
,
Tarchi
,
L.
,
Micio
,
M.
, and
Facchini
,
B.
,
2011
, “
Discharge Coefficient Characterization of Jet Array Impingement Holes for an Active Clearance Control System
,”
ETC 9, Istanbul, Turkey, Mar. 21–25, Paper No. ETC2011-252
.
5.
Da Soghe
,
R.
,
Facchini
,
B.
,
Micio
,
M.
, and
Andreini
,
A.
,
2012
, “
Aerothermal Analysis of a Turbine Casing Impingement Cooling System
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
10
.10.1155/2012/103583
6.
Da Soghe
,
R.
,
Bianchini
,
C.
,
D'Errico
,
J.
, and
Tarchi
,
L.
,
2019
, “
Effect of Temperature Ratio on Jet Impingement Heat Transfer in Active Clearance Control Systems
,”
ASME J. Turbomach.
, 141(8), p.
081009
.10.1115/1.4043217
7.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Mazzei
,
L.
,
2016
, “
Heat Transfer Augmentation Due to Coolant Extraction on the Cold Side of Active Clearance Control Manifolds
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021507
.10.1115/1.4031383
8.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
Taylor & Francis
,
Milton Park, Abingdon, UK
.
9.
Hay
,
N.
, and
Lampard
,
D.
,
1998
, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME J. Turbomach.
,
120
(
2
), pp.
314
319
.10.1115/1.2841408
10.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Discharge Coefficient Measurements of Film Cooling Holes With Expanded Exits
,”
ASME Paper No. 97-GT-165
.10.1115/97-GT-165
11.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Method of Correlating Discharge Coefficient of Film-Cooling Holes
,”
AIAA J.
,
36
(
6
), pp.
976
980
.10.2514/2.467
12.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
ASME Paper No. 99-GT-40
.10.1115/99-GT-40
13.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2001
, “
A Method for Correlating the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
(
2
), pp.
258
265
.10.1115/1.1354137
14.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
367
380
.10.1016/j.ijheatmasstransfer.2006.06.007
15.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2008
, “
Effect of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6243
6253
.10.1016/j.ijheatmasstransfer.2008.05.004
16.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2009
, “
Effect of Temperature Ratio on Jet Array Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012201
.10.1115/1.2977546
17.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2010
, “
Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets
,”
AIAA J. Thermophys. Heat Transfer
,
24
(
1
), pp.
133
144
.10.2514/1.44029
18.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
19.
Florschuetz
,
L.
,
Truman
,
C.
, and
Metzger
,
D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
103
(
2
), pp.
337
342
.10.1115/1.3244463
20.
Behbahani
,
A.
, and
Goldstein
,
R.
,
1983
, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
ASME J. Eng. Power
,
105
(
2
), pp.
354
360
.10.1115/1.3227423
21.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
22.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement - A Review
,”
Heat Trans. Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
23.
Ahmed
,
F. B.
,
Weigand
,
B.
, and
Meier
,
K.
,
2010
, “
Heat Transfer and Pressure Drop Characteristics for a Turbine Casing Impingement Cooling System
,”
ASME Paper No. IHTC14-22817
.10.1115/IHTC14-22817
24.
Ahmed
,
F. B.
,
Tucholke
,
R.
,
Weigand
,
B.
, and
Meier
,
K.
,
2011
, “
Numerical Investigation of Heat Transfer and Pressure Drop Characteristics for Different Hole Geometries of a Turbine Casing Impingement Cooling System
,”
ASME Paper No. GT2011-45251
.10.1115/GT2011-45251
25.
Ahmed
,
F.
,
Poser
,
B.
,
Schumann
,
P.
,
Wolfersdorf
,
Y. J.
, von
Weigand
,
B.
, and
Meier
,
K.
,
2012
, “
A Numerical and Experimental Investigation of an Impingement Cooling System for an Active Clearance Control System of a Low Pressure Turbine
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ISROMAC-14
, Feb. 27–Mar. 2,
Honolulu, HI
.
26.
Marzec
,
K.
, and
Kucaba-Pietal
,
A.
,
2014
, “
Heat Transfer Characteristics of an Impingement Cooling System With Different Nozzle Geometry
,”
J. Phys. Conf. Ser.
,
530
, p.
012038
.10.1088/1742-6596/530/1/012038
27.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
‘Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling’
,”
Advances in Heat Transfer
, Vol.
39
,
G. A.
Greene
,
J. P.
Hartnett
,
A.
Bar-Cohen
, and
Y. I.
Cho
, eds.,
Elsevier
,
Amsterdam, NL
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
28.
Goldstein
,
R.
, and
Seol
,
W.
,
1991
, “
Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2133
–21
47
.10.1016/0017-9310(91)90223-2
29.
Liu
,
F.
,
Mao
,
J.
,
Han
,
X.
, and
Gu
,
W.
,
2018
, “
Heat Transfer of Impinging Jet Arrays on a Ribbed Surface
,”
J. Thermophys. Heat Transfer
,
32
(
3
), pp.
669
679
.10.2514/1.T5288
30.
Bozzoli
,
F.
,
Cattani
,
L.
,
Rainieri
,
S.
,
Viloche Bazán
,
F. S.
, and
Borges
,
L. S.
, May
2014
, “
Estimation of the Local Heat-Transfer Coefficient in the Laminar Flow Regime in Coiled Tubes by the Tikhonov Regularisation Method
,”
Int. J. Heat Mass Transfer
,
72
, pp.
352
361
.10.1016/j.ijheatmasstransfer.2014.01.019
31.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
John Wiley & Sons
,
Hoboken, NJ
.
32.
Bozzoli
,
F.
,
Pagliarini
,
G.
, and
Rainieri
,
S.
,
2013
, “
Experimental Validation of the Filtering Technique Approach Applied to the Restoration of the Heat Source Field
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
858
867
.10.1016/j.expthermflusci.2012.10.002
33.
Tikhonov
,
A. N.
,
Goncharsky
,
A.
,
Stepanov
,
V. V.
, and
Yagola
,
A. G.
,
2013
,
Numerical Methods for the Solution of Ill-Posed Problems
,
Springer
,
Berlin, DE
.
34.
Da Soghe
,
R.
, and
Bianchini
,
C.
,
2019
, “
Aero-Thermal Investigation of Convective and Radiative Heat Transfer on Active Clearance Control Manifolds
,”
ASME Paper No. GT2019-90007
.10.1115/GT2019-90007
35.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
36.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
,
John Wiley & Sons
,
Hoboken, NJ
.
37.
ASME,
1985
,
“Measurement Uncertainty: Instrument and Apparatus,”
ANSI/ASME PTC 19.1-1985
.
38.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
39.
Shum-Kivan, F., Duchaine
,
F.
, and
Gicquel
,
L.
,
2014
, “
Large-Eddy Simulation and Conjugate Heat Transfer in a Round Impinging Jet
,”
ASME Paper No. GT2014-25152
.10.1115/GT2014-25152
40.
McGreehan
,
W. F.
, and
Schotsch
,
M. J.
,
1988
, “
Flow Characteristics of Long Orifices With Rotation and Corner Radiusing
,”
ASME J. Turbomach.
,
110
(
2
), pp.
213
217
.10.1115/1.3262183
41.
Valiorgue
,
P.
,
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2009
, “
Heat Transfer Mechanisms in an Impinging Synthetic Jet for a Small Jet-to-Surface Spacing
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
597
603
.10.1016/j.expthermflusci.2008.12.006
42.
Saad
,
N. R.
,
Douglas
,
W. J. M.
, and
Mujumdar
,
A. S.
,
1977
, “
Prediction of Heat Transfer Under an Axisymmetric Laminar Impinging Jet
,”
Ind. Eng. Chem. Fundam.
,
16
(
1
), pp.
148
154
.10.1021/i160061a027
43.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Ann. Rev. Heat Trans.
,
2
(
2
), pp.
157
197
.10.1615/AnnualRevHeatTransfer.v2.60
You do not currently have access to this content.