Abstract

Any outlet restriction downstream of pressure gain combustion (PGC), such as turbine blades, affects its flow field and may cause additional thermodynamic losses. The unsteadiness in the form of pressure, temperature, and velocity vector fluctuations has a negative impact on the operation of conventional turbines. Additionally, experimental measurements and data acquisition present researchers with challenges that have to do mostly with the high temperature exhaust of PGC and the high frequency of its operation. Nevertheless, numerical simulations can provide important insights into PGC exhaust flow and its interaction with turbine blades. In this paper, a rotating detonation combustor (RDC) and a row of nozzle guide vanes have been modeled based on the data from literature and an available experimental setup. Unsteady Reynolds-averaged Navier–Stokes (URANS) simulations were done for five guide vane configurations with different geometrical parameters to investigate the effect of solidity and blade type representing different outlet restrictions on the RDC exhaust flow. The results analyzed the connection between total pressure loss and the vanes solidity and thickness to chord ratio. It is observed that more than 57% of the upstream velocity angle fluctuation amplitude was damped by the vanes. Furthermore, the area reduction was found to be the significant driving factor for damping the velocity angle fluctuations, whether in the form of solidity or thickness on chord ratio increment. This RDC exhaust flow investigation is an important primary step from a turbomachinery standpoint, which provided details of blade behavior in such an unsteady flow field.

References

1.
International Civil Aviation Organization
,
2019
, “
ICAO Global Environmental Trends—Present and Future Aircraft Noise and Emissions
,” The Council of
ICAO
, Montreal, PQ, Canada, Report No.
A40-WP/54
.https://www.icao.int/Meetings/a40/Documents/WP/wp_054_en.pdf
2.
Popovíc
,
I.
, and
Hodson
,
H. P.
,
2013
, “
Improving Turbine Stage Efficiency and Sealing Effectiveness Through Modifications of the Rim Seal Geometry
,”
ASME J. Turbomach.
,
135
(
6
), p. 061016.10.1115/1.4024872
3.
Asli
,
M.
, and
M. Tousi
,
A.
,
2013
, “
Performance Analysis of Axial Flow Compressor and Part Load Consideration in a Gas Turbine Application
,”
J. Therm. Sci. Technol.
,
8
(
3
), pp.
476
487
.10.1299/jtst.8.476
4.
Odgers
,
J.
,
Kretschmer
,
D.
, and
Pearce
,
G. F.
,
1993
, “
The Combustion of Droplets Within Gas Turbine Combustors: Some Recent Observations on Combustion Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
522
532
.10.1115/1.2906739
5.
Stathopoulos
,
P.
,
2018
, “
Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energies
,
11
(
12
), p.
3521
.10.3390/en11123521
6.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
7.
Schauer
,
F.
,
Bradley
,
R.
, and
Hoke
,
J.
,
2003
, “
Interaction of a Pulsed Detonation Engine With a Turbine
,”
AIAA
Paper No. 2003-0891.10.2514/6.2003-891
8.
Rasheed
,
A.
,
Tangirala
,
V. E.
,
Vadervort
,
C. L.
,
Dean
,
A. J.
, and
Haubert
,
C.
,
2004
, “
Interactions of a Pulsed Detonation Engine With a 2D Blade Cascade
,”
AIAA
Paper No. 2004-1207.10.2514/6.2004-1207
9.
Rasheed
,
A.
,
Furman
,
A. H.
, and
Dean
,
A. J.
,
2011
, “
Experimental Investigations of the Performance of a Multitube Pulse Detonation Turbine System
,”
J. Propul. Power
,
27
(
3
), pp.
586
596
.10.2514/1.B34013
10.
Wolański
,
P.
,
2015
, “
Application of the Continuous Rotating Detonation to Gas Turbine
,”
Appl. Mech. Mater.
,
782
, pp.
3
12
.10.4028/www.scientific.net/AMM.782.3
11.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R. T.
,
Wagner
,
M.
, and
Schauer
,
F. R.
,
2017
, “
RDE Implementation Into an Open-Loop T63 Gas Turbine Engine
,”
AIAA
Paper No. 2017-1747.10.2514/6.2017-1747
12.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.10.1115/1.4041135
13.
Rhee
,
H.
,
Ishiyama
,
C.
, and
Higashi
,
J.
,
2017
, “
Experimental Study on a Rotating Detonation Turbine Engine With an Axial Turbine
,”
26th ICDERS
, Boston, MA, Jul. 30-Aug. 4, pp.
1
6
. https://www.sciencedirect.com/science/article/abs/pii/S009457651830479X
14.
Tellefsen
,
J.
,
2012
, “
Build Up and Operation of an Axial Turbine Driven by a Rotary Detonation Engine
,”
M.Sc. thesis
,
Air Force Institute of Technology
, Wright-Patterson Air Force Base, OH.https://scholar.afit.edu/etd/1071/
15.
Rankin
,
B. A.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2014
, “
Periodic Exhaust Flow Through a Converging-Diverging Nozzle Downstream of a Rotating Detonation Engine
,”
AIAA
Paper No. 2014-1015.10.2514/6.2014-1015
16.
Braun
,
J.
,
Saavedra Garcia
,
J.
, and
Paniagua
,
G.
,
2017
, “
Evaluation of the Unsteadiness Across Nozzles Downstream of Rotating Detonation Combustors
,”
AIAA
Paper No. 2017-1063.10.2514/6.2017-1063
17.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2019
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), pp.
1
13
.10.1115/1.4040815
18.
Braun
,
J.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Liu
,
Z.
,
Saavedra
,
J.
,
Athmanathan
,
V.
, and
Meyer
,
T.
,
2019
, “
Characterization of an Integrated Nozzle and Supersonic Axial Turbine With a Rotating Detonation Combustor
,”
AIAA
Paper No.
2019-3873
.10.2514/6.2019-3873
19.
Bach
,
E.
,
Bohon
,
M.
,
Paschereit
,
C. O.
, and
Stathopoulos
,
P.
,
2018
, “
Development of an Instrumented Guide Vane Set for RDC Exhaust Flow Characterization
,”
AIAA
Paper No. 2018-4479.10.2514/6.2018-4479
20.
Asli
,
M.
,
Cuciumita
,
C.
,
Stathopoulos
,
P.
, and
Paschereit
,
C. O.
,
2019
, “
Numerical Investigation of a Turbine Guide Vane Exposed to Rotating Detonation Exhaust Flow
,”
ASME
Paper No. GT2019-91263.10.1115/GT2019-91263
21.
Papa
,
F.
,
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2017
, “
Modeling and Measurements of Heat/Mass Transfer in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
9
), p.
091002
.10.1115/1.4036106
22.
Asli
,
M.
, and
Tousi
,
A. M.
,
2011
, “
Sensitivity Analysis of a Centrifugal Compressor Using the Linearization Method
,”
ASME
Paper No. AJK2011-05013.10.1115/AJK2011-05013
23.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation k-Omega Turbulence Models for Aerodynamic Flows
,” NASA Ames Research Center, Washington, DC, Report No.
TM-103975
, pp.
1
31
.https://ntrs.nasa.gov/citations/19930013620
24.
Greitzer
,
E.
,
Tan
,
C.
, and
Graf
,
M.
,
2004
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
, Cambridge, UK.
25.
Chen
,
L.
,
Zhuge
,
W.
,
Zhang
,
Y.
,
Xie
,
L.
, and
Zhang
,
S.
,
2011
, “
Effects of Pulsating Flow Conditions on Mixed Flow Turbine Performance
,”
ASME
Paper No. GT2011-45164.10.1115/GT2011-45164
26.
Kailasanath
,
K.
,
2013
, “
Rotating Detonation Engine Research at NRL
,”
International Workshop on Detonation for Propulsion (IWDP 2013)
, Taiwan, Taipei, July 26-28, pp.
1
14
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a596886.pdf
27.
Schwer
,
D. A.
,
Brophy
,
C. M.
, and
Kelso
,
R. H.
,
2018
, “
Pressure Characteristics of an Aerospike Nozzle in a Rotating Detonation Engine
,”
AIAA
Paper No. 2018-4968.10.2514/6.2018-4968
28.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
,
ASME Press
,
New York
.
You do not currently have access to this content.