Abstract

A Honeywell liquid-fueled gas turbine test combustor at idle conditions is numerically investigated in simcenterstar-ccm+ version 2020.3. This work presents large eddy simulation (LES) results using both the flamelet generated manifold (FGM) and detailed chemistry combustion models. Both take advantage of a hybrid chemical (HyChem) mechanism which has previously demonstrated very good accuracy for real fuels such as Jet-A with only 47 species. The objective of this work is to investigate the ability of FGM and detailed chemistry modeling to capture pollutant formation in an aero-engine combustor. Comparisons for NOx, CO, unburned hydrocarbons (UHC), and soot are made, along with the radial temperature profile. To fully capture potential emissions, a soot moment model and Zeldovich NOx model are employed along with radiation. A comparison of results with and without chemistry acceleration techniques for detailed chemistry is included. Then, computational costs are assessed by comparing the performance and scalability of the simulations with each of the combustion models. It is found that the detailed chemistry case with clustering can reproduce nearly identical results to detailed chemistry without any acceleration if CO is added as a clustering variable. With the Lagrangian model settings chosen for this study, the detailed chemistry results compared more favorably with the experimental data than FGM; however, there is uncertainty in the secondary breakup parameters. Sensitivity of the results to a key parameter in the spray breakup model is provided for both FGM and complex chemistry (CC). By varying this breakup rate, the FGM case can predict CO, NOx, and UHC equally well. The smoke number, however, is predicted most accurately by CC. The cost for running detailed chemistry with clustering is found to be about four times that of FGM for this combustor and chemical mechanism.

References

1.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2013
,
Gas Turbine Emissions
,
Cambridge University Press
, Cambridge, UK.
2.
James
,
S.
,
Anand
,
M. S.
, and
Sekar
,
B.
,
2008
, “
Towards Improved Prediction of Aero-Engine Combustor Performance Using Large Eddy Simulations
,”
ASME
Paper No. GT2008-50199.10.1115/GT2008-50199
3.
Moin
,
P.
, and
Apte
,
S.
,
2006
, “
Large-Eddy Simulation of Realistic Gas Turbine Combustors
,”
AIAA J.
,
44
(
4
), pp.
698
708
.10.2514/1.14606
4.
Boudier
,
G.
,
Gicquel
,
L.
,
Poinsot
,
T.
,
Bissieres
,
D.
, and
Berat
,
C.
,
2007
, “
Comparison of LES, RANS and Experiments in an Aeronauticl Gas Turbine Combustion Chamber
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3075
3082
.10.1016/j.proci.2006.07.067
5.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K.-U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.10.1016/j.combustflame.2004.03.008
6.
Koo
,
H.
,
Hassanaly
,
M.
,
Raman
,
V.
,
Mueller
,
M. E.
, and
Peter Geigle
,
K.
,
2017
, “
Large Eddy Simulation of Soot Formation in a Model Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031503
.10.1115/1.4034448
7.
Goldin
,
G.
,
Ren
,
Z.
,
Forkel
,
H.
,
Lu
,
L.
,
Tangirala
,
V.
, and
Karim
,
H.
,
2012
, “
Modeling CO With Flamelet-Generated Manifolds: Part 1—Flamelet Configuration
,”
ASME
Paper No. GT2012-69528.10.1115/GT2012-69528
8.
Wang
,
H.
,
Xu
,
R.
,
Wang
,
K.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Brezinsky
,
K.
, and
Egolfopoulos
,
F. N.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—I. Evidence From Experiments, and Thermodynamic, Chemical Kinetic and Statistical Considerations
,”
Combust. Flame
,
193
, pp.
502
519
.10.1016/j.combustflame.2018.03.019
9.
Xu
,
R.
,
Wang
,
K.
,
Banerjee
,
S.
,
Shao
,
J.
,
Parise
,
T.
,
Zhu
,
Y.
,
Wang
,
S.
,
Movaghar
,
A.
,
Lee
,
D. J.
,
Zhao
,
R.
,
Han
,
X.
,
Gao
,
Y.
,
Lu
,
T.
,
Brezinsky
,
K.
,
Egolfopoulos
,
F. N.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Bowman
,
C. T.
, and
Wang
,
H.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—II. Reaction Kinetic Models of Jet and Rocket Fuels
,”
Combust. Flame
,
193
, pp.
520
537
.10.1016/j.combustflame.2018.03.021
10.
Siemens Digital Industries Software
,
2020
, “
Simcenter STAR-CCM+ User Guide V2020.3
,” Siemens Digital Industries Software, Germany.
11.
Babajimopoulos
,
I.
,
Assanis
,
D. N.
,
Flowers
,
D.
,
Aceves
,
S.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.10.1243/146808705X30503
12.
Shi
,
Y.
,
Hessel
,
R. P.
, and
Reitz
,
R. D.
,
2009
, “
An Adaptive Multi-Grid Chemistry (AMC) Model for Efficient Simulation of HCCI and Di Engine Combustion
,”
Combust. Theory Modell.
,
13
(
1
), pp.
83
104
.10.1080/13647830802401101
13.
Raju
,
M.
,
Wang
,
M.
, and
Dai
,
M.
,
2012
, “
Acceleration of Detailed Chemical Kinetics Using Multi-Zone Modeling for CFD in Internal Combustion Engine Simulations
,”
SAE
Paper No. 2012-01-0135.10.4271/2012-01-0135
14.
Mallouppas
,
G.
,
Goldin
,
G.
,
Zhang
,
Y.
,
Thakre
,
P.
, and
Rogerson
,
J.
,
2019
, “
Validation of Chemistry Acceleration Techniques With an Industrial Gas Turbine
,”
ASME
Paper No. GT2019-90218.10.1115/GT2019-90218
15.
Karalus
,
M.
,
Krishnamoorthy
,
N.
,
Reynolds
,
B.
, and
Mallouppas
,
G.
,
2019
, “
An Assessment of the Implicit Non-Iterative PISO Solution Procedure for the Prediction of Combustor Performance
,”
ASME
Paper No. GT2019-90950.10.1115/GT2019-90950
16.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, p.
35
.10.1088/1367-2630/6/1/035
17.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
453
482
.10.1146/annurev.fluid.38.050304.092133
18.
Koch
,
R.
, and
Becker
,
R.
,
2004
, “
Evaluation of Quadrature Schemes for the Discrete Ordinates Method
,”
J. Quant. Spectrosc. Radiat. Transfer
,
84
(
4
), pp.
423
435
.10.1016/S0022-4073(03)00260-7
19.
Serban
,
R.
, and
Hindmarsh
,
A.
,
2005
, “
CVODES: The Sensitivity-Enabled ODE Solver in SUNDIALS
,”
ASME
Paper No. DETC2005-85597.10.1115/DETC2005-85597
20.
Franklach
,
M.
, and
Wang
,
H.
,
1994
, “
Detailed Mechanism and Modeling of Soot Particle Formation
,”
Soot Formation in Combustion: Mechanisms and Models
,
H.
Brockhorn
, ed.,
Springer Berlin Heidelberg
, Germany.
21.
Lindstedt
,
R.
, and
Louloudi
,
S.
,
2005
, “
Joint-Scalar Transported PDF Modeling of Soot Formation and Oxidation
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
775
783
.10.1016/j.proci.2004.08.080
22.
Appel
,
J.
,
Bockhorn
,
H.
, and
Frenklach
,
M.
,
2000
, “
Kinetic Modeling of Soot Formation With Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons
,”
Combust. Flame
,
121
(
1–2
), pp.
122
136
.10.1016/S0010-2180(99)00135-2
23.
Baulch
,
D. L.
,
Drysdall
,
D.
,
Horne
,
D. G.
, and
Lloyd
,
A. C.
,
1973
,
Evaluated Kinetic Data High Temperature Reactions
, Vol.
1–3
, Butterworth-Heinemann Ltd., Oxford, UK.
24.
Apte
,
S.
,
Mahesh
,
K.
,
Gorokhovski
,
M.
, and
Moin
,
P.
,
2009
, “
Stochastic Modeling of Atomizing Spray in a Complex Swirl Injector Using Large Eddy Simulation
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2257
2266
.10.1016/j.proci.2008.06.156
25.
SAE International
,
2011
, “
Aircraft Gas Turbine Engine Exhaust Smoke Measurement
,”
SAE
Paper No. ARP1179D.https://www.sae.org/standards/content/arp1179d/
26.
International Civil Aviation Organization
,
2008
, “
Annex 16, Volume II Aircraft Engine Emissions
,” International Civil Aviation Organization, Montreal, QC, Canada.
27.
Chime
,
A. H.
,
2018
, “
Experimental and Numerical Modeling of NOx Formation in Premixed Combustion of Pure and Renewable Liquid Fuels
,”
Ph.D. thesis
, University of Washington, Seattle, WA.https://digital.lib.washington.edu/researchworks/handle/1773/43415
28.
Saggese
,
C.
,
Wan
,
K.
,
Xu
,
R.
,
Tao
,
Y.
,
Bowman
,
C.
,
Park
,
J.
,
Lu
,
T.
, and
Wang
,
H.
,
2020
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—V. NOx Formation From a Typical Jet A
,”
Combust. Flame
,
212
, pp.
270
278
.10.1016/j.combustflame.2019.10.038
29.
Wang
,
L.
,
Ozogul
,
H.
,
Kaushik
,
T.
,
Bhat
,
A.
, and
Rida
,
S.
,
2020
, “
Towards a Detailed Liquid Fuel Injection Model for Gas Turbine Combustor CFD
,”
ASME
Paper No. GT2020-16044.10.1115/GT2020-16044
You do not currently have access to this content.