Abstract

This study deals with a low pressure-ratio centrifugal compressor consisting of two counter-rotating rotors called a counter-rotating centrifugal compressor (CRCC). The design method based on the loss model was presented to determine the geometric parameters of the two counter-rotating rotors. According to this method, the rotor of a selected single rotor centrifugal compressor (SRCC) has been redesigned into two counter-rotating rotors (upstream and downstream rotors) by choosing the value of meridional length ratio (LR). The meridional view, the volute shape, and the operating parameters of SRCC are preserved during the design process. In a first step, the counter-rotating mode at a constant rotor speed of 11k rpm has been carried out. The overall characteristics of CRCC are compared to those of SRCC. In a second step, the map characteristic of CRCC is established for seven speed ratios. The results show that CRCC increases up to 4.6% for the pressure ratio and 3.5% for the efficiency compared to SRCC at the same tip-speed. In addition, CRCC can operate at a lower tip-speed by about 2krpm to produce the same characteristics as SRCC, with better efficiency over a wide range of flow rates. However, the surge margin of the CRCC is shifted to higher flow rates. This disadvantage of the CRCC was solved by choosing the adequate pair of the rotational speeds of the two rotors that will be presented in other publication.

References

1.
Fukutomi
,
J.
,
Shigemitsu
,
T.
, and
Yasunobu
,
T.
,
2008
, “
Performance and Internal Flow of Sirocco Fan Using Contra-Rotating Rotors
,”
J. Therm. Sci.
,
17
(
1
), pp.
35
41
.10.1007/s11630-008-0035-8
2.
Tosin
,
S.
,
Dreiss
,
A.
, and
Friedrichs
,
J.
,
2015
, “
Experimental and Numerical Investigation of a Counter-Rotating Mixed-Flow Single Stage Pump
,”
ASME
Paper No. GT2015-42152
.10.1115/GT2015-42152
3.
Sharma
,
P. B.
,
Jain
,
Y. P.
, and
Pundhir
,
D. S.
,
1988
, “
A Study of Some Factors Affecting the Performance of a Contra-Rotating Axial Compressor Stage
,”
Proc. Inst. Mech. Eng., Part A
,
202
, pp.
15
21
.10.1243/PIME_PROC_1988_202_003_02
4.
Furukawa
,
A.
,
Shigemitsu
,
T.
, and
Watanabe
,
S.
,
2007
, “
Performance Test and Flow Measurement of Contra-Rotating Axial Flow Pump
,”
J. Therm. Sci.
,
16
(
1
), pp.
7
13
.10.1007/s11630-007-0007-4
5.
Chen
,
Y. Y.
,
Liu
,
B.
,
Xuan
,
Y.
, and
Xiang
,
X. R.
,
2008
, “
A Study of Speed Ratio Affecting the Performance of a Contra-Rotating Axial Compressor
,”
Proc. Inst. Mech. Eng., Part G
,
222
(
7
), pp.
985
991
.10.1243/09544100JAERO364
6.
Shi
,
L.
,
Liu
,
B.
,
Na
,
Z.
,
Wu
,
X.
, and
Lu
,
X.
,
2015
, “
Experimental Investigation of a Counter-Rotating Compressor With Boundary Layer Suction
,”
Chin. J. Aeronaut.
,
28
(
4
), pp.
1044
1054
.10.1016/j.cja.2015.05.003
7.
Shigemitsu
,
T.
,
Miyazaki
,
K.
,
Hirosawa
,
K.
, and
Fukuda
,
H.
,
2018
, “
Performance and Internal Flow of Contra-Rotating Small-Sized Cooling Fan
,”
Open J. Fluid Dyn.
,
8
(
02
), p.
181
. 10.4236/ojfd.2018.82013
8.
Luo
,
D.
,
Sun
,
X.
, and
Huang
,
D.
,
2020
, “
Design of 1 + 1/2 Counter Rotating Centrifugal Turbine and Performance Comparison With Two-Stage Centrifugal Turbine
,”
Energy
,
211
, p.
118628
.10.1016/j.energy.2020.118628
9.
Mao
,
X.
, and
Liu
,
B.
,
2020
, “
Investigation of the Casing Groove Location Effect for a Large Tip Clearance in a Counter-Rotating Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
105
, p.
106059
.10.1016/j.ast.2020.106059
10.
Sun
,
S.
,
Wang
,
S.
,
Zhang
,
L.
, and
Ji
,
L.
,
2021
, “
Design and Performance Analysis of a Two-Stage Transonic Low-Reaction Counter-Rotating Aspirated Fan/Compressor With Inlet Counter-Swirl
,”
Aerosp. Sci. Technol.
,
111
, p.
106519
.10.1016/j.ast.2021.106519
11.
Price
,
N. C.
,
1941
, “
Counterrotating Supercharger
,” US2344366A.
12.
Florjancic
,
D.
, and
Riedler
,
J.
, 1
9891
, “
Kreiselmaschine Mit Gegenläufigen Laufrädern Und Verwendung Der Kreiselmaschine
,” EP0348342A1.
13.
Dejour
,
Q.
, and
Vo
,
H. D.
,
2018
, “
Assessment of a Novel Non-Axial Counter-Rotating Compressor Concept for Aero-Engines
,”
ASME
Paper No. GT2018-77039.10.1115/GT2018-77039
14.
Limin
,
G. A. O.
,
Xiaojun
,
L. I.
,
Jian
,
X.
, and
Bo
,
L. I. U.
,
2012
, “
The Effect of Speed Ratio on the First Rotating Stall Stage in Contra-Rotating Compressor
,”
ASME
Paper No. GT2012-68802.10.1115/GT2012-68802
15.
Mistry
,
C.
, and
Pradeep
,
A. M.
,
2013
, “
Effect of Variation in Axial Spacing and Rotor Speed Combinations on the Performance of a High Aspect Ratio Contra-Rotating Axial Fan Stage
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
2
), pp.
138
146
.10.1177/0957650912467453
16.
Nouri
,
H.
,
Danlos
,
A.
,
Ravelet
,
F.
,
Bakir
,
F.
, and
Sarraf
,
C.
,
2013
, “
Experimental Study of the Instationary Flow Between Two Ducted Counter-Rotating Rotors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022601
.10.1115/1.4007756
17.
Subbarao
,
R.
, and
Govardhan
,
M.
,
2014
, “
Effect of Speed Ratio on the Performance and Flow Field of a Counter Rotating Turbine
,”
Energy Procedia
,
54
, pp.
580
592
.10.1016/j.egypro.2014.07.299
18.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
,
American Society of Mechanical Engineers
,
New York
.
19.
Casey
,
M.
,
Zwyssig
,
C.
, and
Robinson
,
C.
,
2010
, “
The Cordier Line for Mixed Flow Compressors
,”
ASME
Paper No. GT2010-22549.10.1115/GT2010-22549
20.
Pakle
,
S.
, and
Jiang
,
K.
,
2018
, “
Design of a High-Performance Centrifugal Compressor With New Surge Margin Improvement Technique for High Speed Turbomachinery
,”
Propul. Power Res.
,
7
(
1
), pp.
19
29
.10.1016/j.jppr.2018.02.004
21.
Bourabia
,
L.
,
Abed
,
C. B.
,
Cerdoun
,
M.
,
Khalfallah
,
S.
,
Deligant
,
M.
,
Khelladi
,
S.
, and
Chettibi
,
T.
,
2021
, “
Aerodynamic Preliminary Design Optimization of a Centrifugal Compressor Turbocharger Based on a One-Dimensional Mean-Line Model
,”
Eng. Comput.
, 38(9), pp.
3438
3469
.10.1108/EC-09-2020-0508
22.
Oh
,
H. W.
,
Yoon
,
E. S.
, and
Chung
,
M.
,
1997
, “
An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
4
), pp.
331
338
.10.1243/0957650971537231
23.
Deligant
,
M.
,
Sauret
,
E.
,
Persky
,
R.
,
Khelladi
,
S.
, and
Bakir
,
F.
,
2018
, “
3D CFD Simulation of a Turbocharger Compressor Used as a Turbo Expander for Organic Rankine Cycle
,”
21st Australasian Fluid Mechanics Conference
, Adelaide, Australia, Dec. 10–13.https://eprints.qut.edu.au/124724/13/Contribution_805_final.pdf
24.
McKain
,
T. F.
, and
Holbrook
,
G. J.
,
1997
, “
Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor
,” NASA Contractor Report, National Aeronautics and Space Administration, Washington, DC, pp.
1
82
.
25.
Robert
,
R.
,
Bakir
,
F.
, and
Poulain
,
J.
,
2012
, “
Pompes Rotodynamiques-Similitude et Conception Des Pompes Centrifuges
,” TECHNIQUES DE L'INGÉNIEUR, BM4303 v1.
26.
Qiu
,
X.
,
Japikse
,
D.
,
Zhao
,
J.
, and
Anderson
,
M. R.
,
2011
, “
Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions
,”
ASME J. Turbomach.
,
133
(
4
), p.
041018
.10.1115/1.4003022
27.
Nguyen
,
V. T.
,
Danlos
,
A.
,
Paridaens
,
R.
, and
Bakir
,
F.
,
2019
, “
Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor
,”
Int. J. Mech., Ind. Aerosp. Sci.
,
12
(
5
), pp.
383
392
.10.5281/zenodo.3298874
28.
Tosin
,
S.
,
Friedrichs
,
J.
,
Farooqi
,
R.
, and
Dreiss
,
A.
,
2014
, “
New Approach for Multi-Rotor Mixed-Flow Pump Design and Optimization
,”
ASME
Paper No. FEDSM2014-21595.10.1115/FEDSM2014-21595
You do not currently have access to this content.