Abstract

Vibration amplitudes and fatigue life in multistage turbomachinery are commonly estimated by an investigation of the individual stages. Research is currently extending the scope to include structural and aeroelastic interstage coupling. Both effects have been shown to significantly influence blade vibrations. For safe operation of modern blisk blading with its lower structural damping due to the elimination of frictional contacts at the blade roots, an accurate prediction of the vibration behavior with mistuning is necessary to avoid high cycle fatigue failures. In this paper, a cyclic Craig-Bampton reduction method with a priori interface reduction for multistage rotors is extended to handle aeroelastic effects. This reduced order model efficiently predicts forced response in multistage applications. Aeroelastic multistage simulations are carried out using the harmonic balance method to account for the stage interactions and yield damping and stiffness coefficients, as well as excitation forces. Small structural mistuning is projected onto the tuned system modes of the rotor. The approach is applied to a 2.5-stage compressor configuration. Monte Carlo simulations show the sensitivity of vibration amplitudes to the aeroelastic coupling for mistuning. The aeroelastic interstage coupling is found to originate mainly from acoustic mode propagation between the stages. The fatigue of rotor blades is significantly affected by multistage interactions since vibration amplitudes increase due to the superposition of the responses of multiple modes. This leads to the conclusion that aeroelastic multistage effects need to be incorporated in future design procedures to allow for an accurate prediction of fatigue life.

References

1.
Willeke
,
S.
,
Keller
,
C.
,
Panning-von Scheidt
,
L.
,
Seume
,
J. R.
, and
Wallaschek
,
J.
,
2017
, “
Reduced Order Modeling of Mistuned Bladed Disks Considering Aerodynamic Coupling and Mode Family Interaction
,”
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, European Turbomachinery Society
, Stockholm, Sweden, Apr. 3–7, pp.
1
14
.https://www.euroturbo.eu/paper/ETC2017-242.pdf
2.
Sinha
,
A.
,
2007
, “
Reduced-Order Model of a Mistuned Multi-Stage Bladed Rotor
,”
ASME
Paper No. GT2007-27277.10.1115/GT2007-27277
3.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J.-P.
,
2007
, “
Dynamical Analysis of Multi-Stage Cyclic Structures
,”
Mech. Res. Commun.
,
34
(
4
), pp.
379
384
.10.1016/j.mechrescom.2007.02.004
4.
Laxalde
,
D.
,
Lombard
,
J.-P.
, and
Thouverez
,
F.
,
2007
, “
Dynamics of Multistage Bladed Disks Systems
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1058
1064
.10.1115/1.2747641
5.
Laxalde
,
D.
, and
Pierre
,
C.
,
2011
, “
Modelling and Analysis of Multi-Stage Systems of Mistuned Bladed Disks
,”
Comput. Struct.
,
89
(
3–4
), pp.
316
324
.10.1016/j.compstruc.2010.10.020
6.
Sternchüss
,
A.
,
2009
, “
Multi-Level Parametric Reduced Models of Rotating Bladed Disk Assemblies
,” Ph.D. dissertation,
École Centrale Paris
, Paris, France.
7.
Sternchüss
,
A.
,
Balmès
,
E.
,
Jean
,
P.
, and
Lombard
,
J.-P.
,
2009
, “
Reduction of Multistage Disk Models: Application to an Industrial Rotor
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
) p.
012502
.10.1115/1.2967478
8.
Song
,
S. H.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2005
, “
Multi-Stage Modeling of Turbine Engine Rotor Vibration
,”
ASME
Paper No. GT2016-56718. 10.1115/GT2016-56718
9.
Kurstak
,
E.
, and
D'Souza
,
K.
,
2018
, “
Multistage Blisk and Large Mistuning Modeling Using Fourier Constraint Modes and Prime
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072505
.10.1115/1.4038613
10.
D'Souza
,
K.
,
Saito
,
A.
, and
Epureanu
,
B. I.
,
2012
, “
Reduced-Order Modeling for Nonlinear Analysis of Cracked Mistuned Multistage Bladed-Disk Systems
,”
AIAA J.
,
50
(
2
), pp.
304
312
.10.2514/1.J051021
11.
Battiato
,
G.
,
Firrone
,
C. M.
,
Berruti
,
T. M.
, and
Epureanu
,
B. I.
,
2018
, “
Reduced Order Modeling for Multistage Bladed Disks With Friction Contacts at the Flange Joint
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052505
.10.1115/1.4038348
12.
D'Souza
,
K.
,
Jung
,
C.
, and
Epureanu
,
B. I.
,
2013
, “
Analyzing Mistuned Multi-Stage Turbomachinery Rotors With Aerodynamic Effects
,”
J. Fluids Struct.
,
42
, pp.
388
400
.10.1016/j.jfluidstructs.2013.07.007
13.
Schwerdt
,
L.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2019
, “
A Priori Interface Reduction for Substructuring of Multistage Bladed Disks
,”
A.
Linderholt
,
M. S.
Allen
,
R. L.
Mayes
, and
D.
Rixen
, eds.,
Dynamic Substructures
(Conference Proceedings of the Society for Experimental Mechanics Series), Vol.
4
,
Springer
,
Cham
, pp.
13
21
.
14.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
, pp.
309
332
.10.4271/620532
15.
Schrape
,
S.
,
Giersch
,
T.
,
Nipkau
,
J.
,
Stapelfeldt
,
S.
, and
Mück
,
B.
,
2015
, “
Tyler-Sofrin Modes in Axial High Pressure Compressor Forced Response Analyses
,”
International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines
, Stockholm, Sweden, Sept. 8–11, p. I14-S2-3.
16.
Figaschewsky
,
F.
,
Kühhorn
,
A.
,
Beirow
,
B.
,
Giersch
,
T.
, and
Schrape
,
S.
,
2019
, “
Analysis of Mistuned Forced Response in an Axial High-Pressure Compressor Rig With Focus on Tyler–Sofrin Modes
,”
Aeronaut. J.
,
123
(
1261
), pp.
356
377
.10.1017/aer.2018.163
17.
Terstegen
,
M.
,
Sanders
,
C.
,
Jeschke
,
P.
, and
Schoenenborn
,
H.
,
2019
, “
Rotor–Stator Interactions in a 2.5-Stage Axial Compressor—Part I: Experimental Analysis of Tyler–Sofrin Modes
,”
ASME J. Turbomach.
,
141
(
10
), p.
101002
.10.1115/1.4043961
18.
Sanders
,
C.
,
Terstegen
,
M.
,
Jeschke
,
P.
,
Schönenborn
,
H.
, and
Heners
,
J. P.
,
2019
, “
Rotor–Stator Interactions in a 2.5-Stage Axial Compressor—Part II: Impact of Aerodynamic Modeling on Forced Response
,”
ASME J. Turbomach.
,
141
(
10
), p.
101008
.10.1115/1.4043954
19.
Schönenborn
,
H.
,
2018
, “
Analysis of the Effect of Multirow and Multipassage Aerodynamic Interaction on the Forced Response Variation in a Compressor Configuration—Part I: Aerodynamic Excitation
,”
ASME J. Turbomach.
,
140
(
5
), p.
051004
.10.1115/1.4038868
20.
Gross
,
J.
,
Krack
,
M.
, and
Schönenborn
,
H.
,
2018
, “
Analysis of the Effect of Multirow and Multipassage Aerodynamic Interaction on the Forced Response Variation in a Compressor Configuration—Part II: Effects of Additional Structural Mistuning
,”
ASME J. Turbomach.
,
140
(
5
), p.
051005
.10.1115/1.4038869
21.
Zhao
,
F.
,
Nipkau
,
J.
, and
Vahdati
,
M.
,
2016
, “
Influence of Acoustic Reflections on Flutter Stability of an Embedded Blade Row
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
1
), pp.
29
43
.10.1177/0957650915616004
22.
Keller
,
C.
,
Willeke
,
T.
,
Burrafato
,
S.
, and
Seume
,
J.
,
2015
, “
Design Process of a 1.5-Stage Axial Compressor for Experimental Flutter Investigations
,”
International Gas Turbine Congress, Tokyo
, Japan, Nov. 15–20, No. IGTC2015-0141.https://www.researchgate.net/publication/338670606_Design_Process_of_a_15-Stage_Axial_Compressor_for_Experimental_Flutter_Investigations
23.
Amer
,
M.
,
Maroldt
,
N.
, and
Seume
,
J.
,
2020
, “
Investigation of Multiharmonic Effects in a Single Stage High Speed Compressor
,”
Deutscher Luft- und Raumfahrtkongress
2019
, Darmstadt, Germany, Sept. 30–Oct. 2, pp.
1
10
.https://www.dglr.de/publikationen/2020/490212.pdf
24.
U.S. Department of Defense,
2003
, “
Metallic Materials and Elements for Aerospace Vehicle Structures
,” Report No. MIL-HDBK-5J.
25.
ANSYS Inc.
, 2021, ANSYS® “Academic Research Mechanical, Release 2021 R2, Help System,
Theory Reference, 14.12.7
,” QR Damped Method, ANSYS Inc, Canonsburg, PA.
26.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230. 10.1115/GT2014-25230
27.
Maroldt
,
N.
,
Amer
,
M.
, and
Seume
,
J. R.
,
2022
, “
Forced Response Due to Vane Stagger Angle Variation in an Axial Compressor
,”
ASME J. Turbomach.
,
144
(
8
), p.
081011
.10.1115/1.4053839
28.
Hüttl
,
T.
,
Kahl
,
G.
,
Kennepohl
,
F.
, and
Heinig
,
K.
,
2001
, “
Resolution Requirements for the Numerical Computation of Tonal Noise in Compressors and Turbines of Aeroengines
,”
RTO AVT Symposium on Ageing Mechanisms and Control: Part A - Developments in Computational Aero- and Hdro-Aconstics
, Manchester, UK, Oct. 8–11, p.
5
.https://apps.dtic.mil/sti/citations/ADP014099
29.
Müller
,
M.
, and
Morsbach
,
C.
,
2018
, “
A Logarithmic w-Equation Formulation for Turbulence Models in Harmonic Balance Solvers
,”
7th European Conference on Computational Fluid Dynamics (ECFD 7)
, Glasgow, UK, June 11–15, pp.
1
12
.https://congress.cimne.com/eccm_ecfd2018/admin/files/filePaper/p1631.pdf
30.
Cowles
,
B. A.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—an Industry Perspective
,”
Int. J. Fract.
,
80
(
2–3
), pp.
147
163
.10.1007/BF00012667
31.
Hanschke
,
B.
,
Klauke
,
T.
, and
Kühhorn
,
A.
,
2017
, “
The Effect of Foreign Object Damage on Compressor Blade High Cycle Fatigue Strength
,”
ASME
Paper No. GT2017-63599.10.1115/GT2017-63599
32.
Golubev
,
V. V.
, and
Atassi
,
H. M.
,
1996
, “
Sound Propagation in an Annular Duct With Mean Potential Swirling Flow
,”
J. Sound Vib.
,
198
(
5
), pp.
601
616
.10.1006/jsvi.1996.0591
33.
Mumcu
,
A.
,
Keller
,
C.
,
Hurfar
,
C. M.
, and
Seume
,
J. R.
,
2016
, “
An Acoustic Excitation System for the Generation of Turbomachinery Specific Sound Fields: Part I—Design and Methodology
,”
ASME
Paper No. GT2016-56020. 10.1115/GT2016-56020
34.
Shen
,
M.-H. H.
,
1999
, “
Reliability Assessment of High Cycle Fatigue Design of Gas Turbine Blades Using the Probabilistic Goodman Diagram
,”
Int. J. Fatigue
,
21
(
7
), pp.
699
708
.10.1016/S0142-1123(99)00033-X
You do not currently have access to this content.