Abstract

In-cylinder expansion of internal combustion engines based on Diesel or Otto cycles cannot be completely brought down to ambient pressure, causing a 20% theoretical energy loss. Several systems have been implemented to recover and use this energy such as turbocharging, turbomechanical and turbo-electrical compounding, or the implementation of Miller cycles. In all these cases however, the amount of energy recovered is limited allowing the engine to reach an overall efficiency incremental improvement between 4% and 9%. Implementing an adequately designed expander–generator unit could efficiently recover the unexpanded exhaust gas energy and improve efficiency. In this work, the application of the expander–generator unit to a hybrid propulsion vehicle is considered, where the onboard energy storage receives power produced by an expander–generator, which could hence be employed for vehicle propulsion through an electric drivetrain. Starting from these considerations, a simple but effective modeling approach is used to evaluate the energetic potential of a spark-ignition (SI) engine electrically supercharged and equipped with an exhaust gas expander connected to an electric generator. The overall efficiency was compared to a reference turbocharged engine within a hybrid vehicle architecture. It was found that, if adequately recovered, the unexpanded gas energy could reduce engine fuel consumption and related pollutant emissions by 4–12%, depending on overall power output.

References

1.
Leach
,
F.
,
Kalghatgi
,
G.
,
Stone
,
R.
, and
Miles
,
P.
,
2020
, “
The Scope for Improving the Efficiency and Environmental Impact of Internal Combustion Engines
,”
Transp. Eng.
,
1
, p.
100005
.10.1016/j.treng.2020.100005
2.
Aghaali
,
H.
, and
Ångström
,
H.-E.
,
2015
, “
A Review of Turbo Compounding as a Waste Heat Recovery System for Internal Combustion Engines
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
813
824
.10.1016/j.rser.2015.04.144
3.
Mamdouh
,
A.
,
Fuhaid
,
A.
, and
Apostolos
,
P.
,
2019
, “
Electric Boosting and Energy Recovery Systems for Engine Downsizing
,”
Energies
,
12
(
24
), p.
4636
.10.3390/en12244636
4.
Gianluca
,
P.
,
Giovanni
,
L.
,
Stefano
,
F.
,
Silvia
,
M.
,
Massimo
,
C.
,
Roberto
,
G.
, and
Massimo
,
C.
,
2016
, “
Evaluation of an Electric Turbo Compound System for SI Engines: A Numerical Approach
,”
Appl. Energy
,
162
, pp.
527
540
.10.1016/j.apenergy.2015.10.143
5.
Ivan
,
A.
,
Andrea
,
C.
,
Cesare
,
P.
,
Vincenzo
,
R.
, and
De Cesare Mateo
,
D.
,
2015
, “
Evaluation of CO2 Reduction in SI Engines With Electric Turbo-Compound by Dynamic Powertrain Modelling
,”
IFAC-PapersOnLine
,
48
(
15
), pp.
93
100
.10.1016/j.ifacol.2015.10.014
6.
Federico
,
M.
,
Fabio
,
M.
,
Enrico
,
P.
, and
Ganio Mego
,
G.
,
2006
, “
The Potential of Electric Exhaust Gas Turbocharging for HD Diesel Engines
,”
SAE
Paper No. 2006-01-0437.10.4271/2006-01-0437
7.
Ulrich
,
H.
, and
Algrain Marcelo
,
C.
,
2003
, “
Diesel Engine Electric Turbo Compound Technology
,”
SAE
Paper No. 2003-01-2294.10.4271/2003-01-2294
8.
Mohd Noor
,
A.
,
Che Puteh
,
R.
,
Rajoo
,
S.
,
Basheer
,
U. M.
,
Md Sah
,
M. H.
, and
Shaikh Salleh
,
S. H.
,
2015
, “
Simulation Study on Electric Turbo-Compound (ETC) for Thermal Energy Recovery in Turbocharged Internal Combustion Engine
,”
Appl. Mech. Mater.
,
799–800
, pp.
895
901
.10.4028/www.scientific.net/AMM.799-800.895
9.
Manuel
,
K.
,
Alessandro
,
R.
,
Mamat
,
B.
,
Aman
,
M. I.
, and
Ricardo
,
M.-B.
,
2015
, “
Heavy-Duty Engine Electric Turbocompounding
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
229
(
4
), pp.
457
472
.10.1177/0954407014547237
10.
Cipollone
,
R.
,
Di Battista
,
D.
, and
Gualtieri
,
A.
,
2013
, “
Turbo Compound Systems to Recover Energy in ICE
,”
Int. J. Eng. Innovative Technol.
,
3
(
6
), pp.
249
257
.https://www.researchgate.net/publication/260136291_Turbocompound_systems_to_recover_energy_in_ICE
11.
Lin
,
Z. W.
,
Lei
,
H.
,
Wei
,
W.
,
Yangjun
,
Z.
, and
Yongsheng
,
H.
,
2011
, “
Optimization of an Electric Turbo Compounding System for Gasoline Engine Exhaust Energy Recovery
,”
SAE
Paper No. 2011-01-0377.10.4271/2011-01-0377
12.
Ghosh
,
T. K.
, and
Prelas
,
M. A.
,
2009
,
Energy Resources and Systems
,
Springer
,
Dordrecht, The Netherlands
.
13.
Zhao
,
Y.
, and
Chen
,
J.
,
2006
, “
Performance Analysis and Parametric Optimum Criteria of an Irreversible Atkinson Heat-Engine
,”
Appl. Energy
,
83
(
8
), pp.
789
800
.10.1016/j.apenergy.2005.09.007
14.
Hou
,
S.-S.
,
2007
, “
Comparison of Performances of Air Standard Atkinson and Otto Cycles With Heat Transfer Considerations
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1683
1690
.10.1016/j.enconman.2006.11.001
15.
Zhao
,
J.
, and
Xu
,
F.
,
2018
, “
Finite-Time Thermodynamic Modeling and a Comparative Performance Analysis for Irreversible Otto, Miller and Atkinson Cycles
,”
Entropy
,
20
(
1
), p.
75
.10.3390/e20010075
16.
Miller
,
R. H.
,
1947
, “
Supercharging and Internal Cooling Cycle for High Output
,”
Trans. ASME
,
69
, pp.
453
457
.
17.
Kawamoto
,
N.
,
Naiki
,
K.
,
Kawai
,
T.
,
Shikida
,
T.
,
2009
, “
Development of New 1.8-Liter Engine for Hybrid Vehicles
,”
SAE
Paper No. 2009-01-1061.10.4271/2009-01-1061
18.
Wang
,
Y.
,
Lin
,
L.
,
Zeng
,
S.
,
Huang
,
J.
,
Roskilly
,
A. P.
,
He
,
Y.
,
Huang
,
X.
, and
Li
,
S.
,
2008
, “
Application of the Miller Cycle to Reduce NOx Emissions From Petrol Engines
,”
Appl. Energy
,
85
(
6
), pp.
463
474
.10.1016/j.apenergy.2007.10.009
19.
Mi
,
C.
, and
Abul Masrur
,
M.
,
2017
,
Hybrid Electric Vehicles: Principles and Applications With Practical Perspectives
, 2nd ed.,
Wiley
, Hoboken, NJ.
20.
Lars
,
E.
,
Tobias
,
L.
,
Oskar
,
L.
, and
Andreas
,
T.
,
2012
, “
Scalable Component-Based Modeling for Optimizing Engines With Supercharging, E-Boost and Turbocompound Concepts
,”
SAE Int. J. Engines
,
5
(
2
), pp.
579
595
.10.4271/2012-01-0713
21.
Millo
,
F.
,
Mallamo
,
F.
,
Digiovanni
,
R.
,
Dominici
,
A.
,
Morel
,
T.
, and
Okarmus
,
M.
,
2004
, “
Improving Misfire Diagnostic Through Coupled Engine/Vehicle Numerical Simulation
,”
SAE
Paper No. 2004-01-0613.10.4271/2004-01-0613
22.
Yuan
,
H.
,
Chen
,
Z.
,
Zhou
,
Z.
,
Yang
,
Y.
,
Brear
,
M. J.
, and
Anderson
,
J. E.
,
2020
, “
Formulating Gasoline Surrogate for Emulating Octane Blending Properties With Ethanol
,”
Fuel
,
261
, p.
116243
.10.1016/j.fuel.2019.116243
23.
National Institute of Standards and Technology, 2022, “NIST Chemistry WebBook,” National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, accessed Feb. 10, 2022, https://webbook.nist.gov/chemistry/
24.
Andrew
,
H.
, and
Andy
,
D.
,
2014
, “
Development of an Exhaust Driven Turbine-Generator Integrated Gas Energy Recovery System (TIGERS®)
,”
SAE
Paper No. 2014-01-1873.10.4271/2014-01-1873
25.
Michon
,
M.
,
Calverley
,
S. D.
,
Clark
,
R. E.
,
Howe
,
D.
,
Chambers
,
J. D. A.
,
Sykes
,
P. A.
,
Dickinson
,
P. G.
,
2007
, “
Modelling and Testing of a Turbo-Generator System for Exhaust Gas Energy Recovery
,”
Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference
, Arlington, TX, Sept. 9–12, Paper No. 4544184, pp.
544
550
. 10.1109/VPPC.2007.4544184
26.
Nonthakarn
,
P.
,
Ekpanyapong
,
M.
,
Nontakaew
,
U.
, and
Bohez
,
E.
,
2019
, “
Design and Optimization of an Integrated Turbo-Generator and Thermoelectric Generator for Vehicle Exhaust Electrical Energy Recovery
,”
Energies
,
12
(
16
), p.
3134
.10.3390/en12163134
27.
Beccari
,
S.
, and
Pipitone
,
E.
,
2019
, “
Performance and Combustion Analysis of a Supercharged Double-Fuel Spark Ignition Engine
,”
AIP Conf. Proc.
,
2191
, p.
020017
.10.1063/1.5138750
28.
Pipitone
,
E.
, and
Beccari
,
A.
,
2007
, “
A Study on the Use of Combustion Phase Indicators for MBT Spark Timing on a Bi-Fuel Engine
,”
SAE
Paper No. 2007-24-0051.10.4271/2007-24-0051
You do not currently have access to this content.