Abstract

The flow in the heated rotating cavity of an aero-engine compressor is driven by buoyancy forces, which result in pairs of cyclonic and anticyclonic vortices. The resultant cavity flow field is three-dimensional, unsteady, and unstable, which makes it challenging to model the flow and heat transfer. In this paper, properties of the vortex structures are determined from novel unsteady pressure measurements collected on the rotating disk surface over a range of engine-representative parameters. These measurements are the first of their kind with practical significance to the engine designer and for validation of computational fluid dynamics. One cyclonic/anticyclonic vortex pair was detected over the experimental range, despite the measurement of harmonic modes in the frequency spectra at low Rossby numbers. It is shown that these modes were caused by unequal size vortices, with the cyclonic vortex the larger of the pair. The structures slipped relative to the disks at a speed typically around 10%–15% of that of the rotor, but the speed of precession was often unsteady. The coherency, strength, and slip of the vortex pair increased with the buoyancy parameter, due to the stronger buoyancy forces, but they were largely independent of the rotational Reynolds number.

References

1.
Fitzpatrick
,
J. N.
,
2013
, “
Coupled Thermal-Fluid Analysis with Flowpath-Cavity Interaction in a Gas Turbine Engine
,”
Master's thesis
,
Purdue University
, West Lafayette, IN.https://hdl.handle.net/1805/4441
2.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.10.1115/1.2927991
3.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
4.
Long
,
C. A.
,
Miche
,
N. D. D.
, and
Childs
,
P. R. N.
,
2007
, “
Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1391
1404
.10.1016/j.ijheatfluidflow.2007.04.010
5.
Fazeli
,
S. M.
,
Kanjirakkad
,
V.
, and
Long
,
C. A.
,
2020
, “
Experimental and Computational Investigation of Flow Structure in Buoyancy Dominated Rotating Cavities
,”
ASME
Paper No. GT2020-14683.10.1115/GT2020-14683
6.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2012
, “
Local Measurements of Disc Heat Transfer in Heated Rotating Cavities for Several Flow Regimes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051016
.10.1115/1.4003965
7.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Effect of an Axial Throughflow on Buoyancy-Induced Flow in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
80
, p.
108468
.10.1016/j.ijheatfluidflow.2019.108468
8.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
, 143(6), p. 061004.10.1115/1.4049100
9.
Gao
,
F.
, and
Chew
,
J. W.
,
2020
, “
Ekman Layer Scrubbing and Shroud Heat Transfer in Centrifugal Buoyancy-Driven Convection
,”
ASME
Paper No. GT2020-16220.10.1115/GT2020-16220
10.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Cavity With Axial Throughflow
,”
ASME
Paper No. 2000-GT-280.10.1115/2000-GT-280
11.
Owen
,
J. M.
, and
Powell
,
J.
,
2006
, “
Buoyancy-Induced Flow in a Heated Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
128
134
.10.1115/1.2032451
12.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1979
, “
Vortex Breakdown in a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
90
(
1
), pp.
109
127
.10.1017/S0022112079002093
13.
Puttock-Brown
,
M. R.
, and
Rose
,
M. G.
,
2018
, “
Formation and Evolution of Rayleigh-Bénard Streaks in Rotating Cavities
,”
ASME
Paper No. GT2018-75497.10.1115/GT2018-75497
14.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J. W.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.10.1115/1.4034452
15.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2019
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.10.1115/1.4041115
16.
Jackson
,
R.
,
Tang
,
H.
,
Scobie
,
J.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement of Heat Transfer and Flow Structures in a Closed Rotating Cavity
,”
ASME
Paper No. GT2021-59605.10.1115/GT2021-59605
17.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
, 143(4), p.
041030
.10.1115/1.4048601
You do not currently have access to this content.