Abstract

We present a two-step optimization (TSO) framework, which uses the pressure data of an unstable combustion process to estimate the complex-valued flame transfer function (FTF). From the pressure time series, we obtain the instability frequency and the amplitudes of the pressure fluctuations. The first optimization step is based on an acoustic network model of the combustor: the TSO approach makes use of the pressure data to find a simplified n–τ model, which reproduces the unstable combustion process. This step has already been validated for the Rijke tube, a laminar, and a turbulent flame in Ghani et al. (2020, Data-Driven Identification of Nonlinear Flame Models,” ASME J. Eng. Gas Turbines Power, 142(12)). The major contribution of this work adds a second optimization loop to extend the n–τ model to the complex-valued FTF: the gain and phase obtained by the n–τ model are used to fit a distributed time delay model based on the work of Komarek and Polifke (2010, “Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner,” ASME J. Eng. Gas Turbines Power, 132(6)). Our proposed method is applied to a turbulent, premixed, swirl-stabilized flame operated at two power ratings (30 kW and 70 kW) and two swirler positions. The model results for the FTFs are compared against experimentally measured FTFs for these four configurations and all agree well. To the best of our knowledge, this is the first attempt to estimate the complex-valued FTF solely based on pressure measurements. Compared to classical methods for FTF determination such as experimental tests or numerical simulations, our TSO approach is fast and accurate. The proposed framework is suitable for perfectly premixed flames stabilized by a swirling flow field, requires two pressure sensors placed at distinct axial locations, and is easy to implement.

References

1.
Schuermans
,
B.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. GT1999-0132.10.1115/99-GT-132
2.
Paschereit
,
C. O.
,
Polifke
,
W.
,
Schuermans
,
B.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
3.
Ghani
,
A.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2015
, “
Acoustic Analysis of a Liquid Fuel Swirl Combustor Using Dynamic Mode Decomposition
,”
ASME
Paper No. GT2015-42769.10.1115/GT2015-42769
4.
Tay Wo Chong
,
L.
,
Kaess
,
R.
,
Komarek
,
T.
,
Foller
,
S.
, and
Polifke
,
W.
,
2010
, “
Identification of Flame Transfer Functions Using Les of Turbulent Reacting Flows
,”
High Performance Computing in Science and Engineering, Garching/Munich 2009
,
S.
Wagner
,
M.
Steinmetz
,
A.
Bode
, and
M. M.
Muller
, eds.,
Springer
,
Berlin Heidelberg
, pp.
255
266
.
5.
Kaiser
,
T.
,
Öztarlik
,
G.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2019
, “
Impact of Symmetry Breaking on the Flame Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1953
1960
.10.1016/j.proci.2018.06.047
6.
Ghani
,
A.
, and
Polifke
,
W.
,
2021
, “
Control of Intrinsic Thermoacoustic Instabilities Using Hydrogen Fuel
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6077
6084
.10.1016/j.proci.2020.06.151
7.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67
, pp.
109
128
.10.1016/j.anucene.2013.10.037
8.
Noiray
,
N.
,
2017
, “
Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041503
.10.1115/1.4034601
9.
Garita
,
F.
,
Yu
,
H.
, and
Juniper
,
M. P.
,
2021
, “
Assimilation of Experimental Data to Create a Quantitatively Accurate Reduced-Order Thermoacoustic Model
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021008
.10.1115/1.4048569
10.
Gant
,
F.
,
Ghirardo
,
G.
,
Cuquel
,
A.
, and
Bothien
,
M.
,
2022
, “
Delay Identification in Thermoacoustics
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021005
.10.1115/1.4052060
11.
Ghani
,
A.
,
Boxx
,
I.
, and
Noren
,
C.
,
2020
, “
Data-Driven Identification of Nonlinear Flame Models
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121015
.10.1115/1.4049071
12.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(1–2), pp.
21
24
.10.1016/S0010-2180(03)00042-7
13.
Hirsch
,
C.
,
Fanaca
,
D.
,
Reddy
,
P.
,
Polifke
,
W.
, and
Sattelmayer
,
T.
,
2005
, “
Influence of the Swirler Design on the Flame Transfer Function of Premixed Flames
,”
ASME
Paper No. GT2005-68195.10.1115/GT2005-68195
14.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J.
,
2014
, “
Dynamics of Swirling Flames
,”
Ann. Rev. Fluid Mech.
,
46
, pp.
174
173
.https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010313-141300
15.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
16.
Polifke
,
W.
,
2020
, “
Modeling and Analysis of premixed Flame Dynamics by Means of Distributed Time Delays
,”
Prog. Energy Comb. Sci.
,
79
, pp.
1
38
.10.1016/j.pecs.2020.100845
17.
Guo
,
S.
,
Silva
,
C. F.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2019
, “
Quantification and Propagation of Uncertainties in Identification of Flame Impulse Response for Thermoacoustic Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021032
.10.1115/1.4041652
18.
Richards
,
G. A.
, and
Yip
,
M. J.
,
1995
, “
Oscillating Combustion From a Premix Fuel Nozzle
,”
The Combustion Institute/American Flame Research Committee Meeting
, San Antonio, TX, Apr. 23–26.
19.
Palies
,
P.
,
2010
, “
Dynamique et instabilités de combustion des flammes swirlées
,” Ph.d. thesis,
Ecole Centrale Paris
, France.
20.
Acharya
,
V. S.
, and
Lieuwen
,
T. C.
,
2014
, “
Role of Azimuthal Flow Fluctuations on Flow Dynamics and Global Flame Response of Axisymmetric Swirling Flames
,”
AIAA
Paper No. 2014-0654.10.2514/6.2014-0654
21.
Albayrak
,
A.
,
Bezgin
,
D. A.
, and
Polifke
,
W.
,
2018
, “
Response of a Swirl Flame to Inertial Waves
,”
Int. J. Spray Combust. Dyn.
,
10
(
4
), pp.
277
286
.10.1177/1756827717747201
22.
Kaji
,
S.
, and
Okazaki
,
T.
,
1970
, “
Propagation of Sound Waves Through a Blade Row: I. Analysis Based on the Semi-Actuator Disk Theory
,”
J. Sound Vib.
,
11
(
3
), pp.
339
353
.10.1016/S0022-460X(70)80038-4
23.
Greitzer
,
E.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flows
,
Cambridge University Press
, Cambridge, UK.
24.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
25.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Acoustic-Convective Mode Conversion in an Airfoil Cascade
,”
J. Fluid Mech.
,
672
, pp.
545
569
.10.1017/S0022112010006142
26.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Experimental Study on the Effect of Swirler Geometry and Swirl Number on Flame Describing Functions
,”
Combust. Sci. Tech.
,
183
(
7
), pp.
704
717
.10.1080/00102202.2010.538103
27.
Albayrak
,
A.
,
Juniper
,
M.
, and
Polifke
,
W.
,
2019
, “
Propagation Speed of Inertial Waves in Cylindrical Swirling Flows
,”
J. Fluid Mech.
,
879
, pp.
85
120
.10.1017/jfm.2019.641
28.
Byrd
,
R.
,
Gilbert
,
J.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.10.1007/PL00011391
29.
Glover
,
F.
,
1997
, “
A Template for Scatter Search and Path Relinking
,”
European Conference on Artificial Evolution
,
Springer
, Berlin, Heidelberg, pp.
1
51
.10.1007/BFb0026589
30.
Ugray
,
Z.
,
Lasdon
,
L.
,
Plummer
,
J.
,
Glover
,
F.
,
Kelly
,
J.
, and
Martí
,
R.
,
2007
, “
Scatter Search and Local Nlp Solvers: A Multistart Framework for Global Optimization
,”
Informs J. Comput.
,
19
(
3
), pp.
328
340
.10.1287/ijoc.1060.0175
31.
Tay-Wo-Chong
,
L.
, and
Polifke
,
W.
,
2013
, “
Large Eddy Simulation-Based Study of the Influence of Thermal Boundary Condition and Combustor Confinement on Premix Flame Transfer Functions
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021502
.10.1115/1.4007734
32.
Albayrak
,
A.
,
Steinbacher
,
T.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2018
, “
Convective Scaling of Intrinsic Thermo-Acoustic Eigenfrequencies of a Premixed Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041510
.10.1115/1.4038083
33.
Avdonin
,
A.
,
Javareshkian
,
A.
, and
Polifke
,
W.
,
2019
, “
Prediction of Premixed Flame Dynamics Using Large Eddy Simulation With Tabulated Chemistry and Eulerian Stochastic Fields
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111024
.10.1115/1.4044996
34.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C.
,
2003
, “
Thermoacoustic Modeling and Control of Multiburner Combustion Systems
,”
ASME
Paper No. 2003-GT-38688.10.1115/2003-GT-38688
35.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2008
, “
Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs
,”
J. Sound Vib.
,
318
(
4–5
), pp.
678
701
.10.1016/j.jsv.2008.04.046
36.
Emmert
,
T.
,
Jaensch
,
S.
,
Sovardi
,
C.
, and
Polifke
,
W.
,
2014
, “
Tax—A Flexible Tool for Low-Order Duct Acoustic Simulation in Time and Frequency Domain
,”
Proceedings of the Seventh Forum Acusticum, DEGA
, Krakow, Poland, Sept. 7–12, pp.
1
9
.https://www.researchgate.net/publication/321133671_taX_-_a_Flexible_Tool_for_Low-Order_Duct_Acoustic_Simulation_in_Time_and_Frequency_Domain
37.
Mensah
,
G.
,
Magri
,
L.
, and
Moeck
,
J.
,
2018
, “
Methods for the Calculation of Thermoacoustic Stability Boundaries and Monte Carlo-Free Uncertainty Quantification
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061501
.10.1115/1.4038156
38.
Ghani
,
A.
,
Steinbacher
,
T.
,
Albayrak
,
A.
, and
Polifke
,
W.
,
2019
, “
Intrinsic Thermoacoustic Feedback Loop in Turbulent Spray Flames
,”
Combust. Flame
,
205
, pp.
22
32
.10.1016/j.combustflame.2019.03.039
39.
Ghani
,
A.
, and
Polifke
,
W.
,
2021
, “
An Exceptional Point Switches Stability of a Thermoacoustic Experiment
,”
J. Fluid Mech.
,
920
, p. R3.10.1017/jfm.2021.480
40.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.10.1016/j.combustflame.2014.06.008
41.
Emmert
,
T.
,
Bomberg
,
S.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3835
3842
.10.1016/j.proci.2016.08.002
You do not currently have access to this content.