Abstract

This paper aims at introducing an original, simulation based, methodology to optimize air charging system of a medium speed engine in order to improve fuel consumption/NOx tradeoff, over a given load profile. A preliminary study is performed on an engine originally equipped with fixed geometry turbocharger (TC) matched at full load. It shows that improving the TC efficiency has a positive impact at matching point but an adverse effect at lower loads. Therefore, matching the TC at part load is more promising when the whole engine operating range is considered. However, this requires using a relief system to avoid unacceptable peak firing pressure (PFP) at full load, and may alter regulated NOx emission. A new, original methodology is then proposed. Using an advanced existing algorithm, it allows for simultaneous optimization of injection timing, main TC matching and relief system design. The objective is to minimize fuel consumption averaged over several operating points (corresponding to actual load profile). At the same time, NOx emission, evaluated on regulatory cycle, is kept below a given limit and others reliability constrains are fulfilled.

The methodology is assessed with several case studies:

• First, various relief systems (blow-off valve, waste gate (WG) and parallel sequential turbocharger (PTC)) are compared on a given load profile.

• Then, the dimensioning of a TC + WG system is performed for two different load profiles.

In both cases, the proposed methodology leads to a charging system design customized for a given user profile, which enables a significant fuel consumption reduction.

References

1.
Woodyard
,
D.
,
2009
,
Pounder's Marine Diesel Engines and Gas Turbines
, 9th ed.,
Butterworth-Heinemann
, Oxford, UK, pp.
173
233
.
2.
Dieselnet
,
2021
, “Technology Guide, Intake Charge System,” accessed June 16, 2019, https://dieselnet.com/tech/air_intake.php
3.
U.S. Energy Information Administration
,
2021
, “Today in Energy,” accessed June 16, 2019, https://www.eia.gov/todayinenergy/detail.php?id=37972
4.
EUGINE
,
2021
, “Engine Power Plants,” accessed June 16, 2014, https://www.eugine.eu/engine-power-plants/index.html
5.
The Motorship,
2021
, “
Turbochargers for Optimised Performance
,” accessed June 16, 2011, www.motorship.com/news101/engines-and-propulsion/turbochargers-for-optimised-performance
6.
Turbomed,
2021
, “Upgrade-Retrofit,” Turbomed, Perama, Hellas, accessed June 16, 2021, turbomed.gr/upgrade-retrofit/
7.
The Retrofit Project,
2021
, “Retrofitting to Reduce CO2 Emission–A Case Study of Three Different Vessels,” accessed June 16, 2020, https://greenship.org/wp-content/uploads/2020/05/GSF-Retrofit-Project.pdf
8.
Hiereth
,
H.
, and
Prenninger
,
P.
,
2007
,
Charging the Internal Combustion Engine
,
Springer-Verlag
,
New York
.
9.
Marelli
,
S.
, and
Capobianco
,
M.
,
2011
, “
Steady and Pulsating Flow Efficiency of a Waste-Gated Turbocharger Radial Flow Turbine for Automotive Application
,”
Energy
,
36
(
1
), pp.
459
465
.10.1016/j.energy.2010.10.019
10.
Park
,
C.
,
Ebisu
,
M.
, and
Bae
,
C.
,
2020
, “
Effects of Turbocharger Rotation Inertia on Instantaneous Turbine Efficiency in a Turbocharged-Gasoline Direct Injection (T-GDI) Engine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
1
), p.
011006
.10.1115/1.4049299
11.
Mosca
,
R.
,
Lim
,
S.
, and
Mihaescu
,
M.
,
2021
, “
Influence of Pulse Characteristics on Turbocharger Radial Turbine
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021018
.10.1115/1.4052498
12.
Ngo Boum
,
G.
,
Bontempo
,
R.
, and
Trébinjac
,
I.
,
2019
, “
Three-Dimensional/One-Dimensional Combined Simulation of Deep Surge Loop in a Turbocharger Compressor With Vaned Diffuser
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071017
.10.1115/1.4042833
13.
Sun
,
Z.
,
Zheng
,
X.
, and
Kawakubo
,
T.
,
2018
, “
Experimental Investigation of Instability Inducement and Mechanism of Centrifugal Compressors With Vaned Diffuser
,”
Appl. Therm. Eng.
,
133
, pp.
464
471
.10.1016/j.applthermaleng.2018.01.071
14.
Galindo
,
J.
,
Tiseira
,
A.
,
Navarro
,
R.
,
Tarí
,
D.
, and
Meano
,
C. M.
,
2017
, “
Effect of the Inlet Geometry on Performance, Surge Margin and Noise Emission of an Automotive Turbocharger Compressor
,”
Appl. Therm. Eng.
,
110
, pp.
875
882
.10.1016/j.applthermaleng.2016.08.099
15.
Bontempo
,
R.
,
Cardone
,
M.
,
Manna
,
M.
, and
Vorraro
,
G.
,
2015
, “
Steady and Unsteady Experimental Analysis of a Turbocharger for Automotive Applications
,”
Energy Convers. Manag.
,
99
, pp.
72
80
.10.1016/j.enconman.2015.04.025
16.
Podevin
,
P.
,
Clenci
,
A.
, and
Descombes
,
G.
,
2011
, “
Influence of the Lubricating Oil Pressure and Temperature on the Performance at Low Speeds of a Centrifugal Compressor for an Automotive Engine
,”
Appl. Therm. Eng.
,
31
(
2–3
), pp.
194
201
.10.1016/j.applthermaleng.2010.08.033
17.
Hong
,
S.-S.
, and
Abhari
,
R. S.
,
2012
, “
Effect of Tip Clearance on Impeller Discharge Flow and Vaneless Diffuser Performance of a Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
8
), pp.
963
974
.10.1177/0957650912455386
18.
Hohenberg
,
K.
,
Martinez-Botas
,
R.
,
Łuczyński
,
P.
,
Freytag
,
C.
, and
Wirsum
,
M.
,
2021
, “
Numerical and Experimental Investigation of a Low Order Radial Turbine Model for Engine-Level Optimization of Turbocharger Design
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101008
.10.1115/1.4051488
19.
Kim
,
H.
,
Park
,
J.
,
Ryu
,
S.
,
Choi
,
S.
, and
Ghal
,
S.
,
2008
, “
The Performance Evaluation With Diffuser Geometry Variations of the Centrifugal Compressor in a Marine Engine (70MW) Turbocharger
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012201
.10.1115/1.2967733
20.
Romagnoli
,
A.
,
Manivannan
,
A.
,
Rajoo
,
S.
,
Chiong
,
M. S.
,
Feneley
,
A.
,
Pesiridis
,
A.
, and
Martinez-Botas
,
R. F.
,
2017
, “
A Review of Heat Transfer in Turbochargers
,”
Renew. Sustain. Energy Rev.
,
79
, pp.
1442
1460
.10.1016/j.rser.2017.04.119
21.
Salameh
,
G.
,
Goumy
,
G.
, and
Chesse
,
P.
,
2021
, “
Water Cooled Turbocharger Heat Transfer Model Initialization: Turbine and Compressor Quasi-Adiabatic Maps Generation
,”
Appl. Therm. Eng.
,
185
, p.
116430
.10.1016/j.applthermaleng.2020.116430
22.
Schinnerl
,
M.
,
Seume
,
J.
,
Ehrhard
,
J.
, and
Bogner
,
M.
,
2016
, “
Heat Transfer Correction Methods for Turbocharger Performance Measurements
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022602
.10.1115/1.4034234
23.
Schinnerl
,
M.
,
Ehrhard
,
J.
,
Bogner
,
M.
, and
Seume
,
J.
,
2017
, “
Correcting Turbocharger Performance Measurements for Heat Transfer and Friction
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022301
.10.1115/GT2017-64283
24.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Arnau
,
F. J.
, and
Samala
,
V.
,
2020
, “
A Holistic Methodology to Correct heat transfer and Bearing Friction Losses From Hot Turbocharger Maps in Order to Obtain Adiabatic Efficiency of the Turbomachinery
,”
Int. J. Engine Res.
,
21
(
8
), pp.
1314
1335
.10.1177/1468087419834194
25.
Burke
,
R. D.
,
Copeland
,
C. D.
,
Duda
,
T.
, and
Rayes-Belmote
,
M. A.
,
2016
, “
Lumped Capacitance and Three-Dimensional Computational Fluid Dynamics Conjugate Heat Transfer Modeling of an Automotive Turbocharger
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092602
.10.1115/1.4032663
26.
Sakamoto
,
K.
,
Wada
,
Y.
,
Ono
,
Y.
, and Yoshikazu, I.,
2016
, “
New Generation Development for Mitsubishi Turbocharger
,”
CIMAC Congress
, Helsinski, Finland, June 6–10, Paper No. 076.
27.
Feneley
,
A. J.
,
Pesiridis
,
A.
, and
Adwari
,
A. M.
,
2017
, “
Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review
,”
Renew. Sustain. Energy Rev.
,
71
, pp.
959
975
.10.1016/j.rser.2016.12.125
28.
Chebli
,
E.
,
Casey
,
M.
,
Martinez-Botas
,
R.
, Sumser, S., Müller, M., Künzel, S., Leweux, J., Gorbach, A., and Schmidt, W.,
2014
, “
The Variable Outlet Turbine Concept for Turbochargers
,”
ASME J. Turbomach.
,
136
(
12
), p.
121001
.10.1115/1.4028231
29.
ABB,
2021
, “ABB Turbocharging, VTG – Variable Turbine Geometry,” accessed June 16, 2009, https://library.e.abb.com/public/72ab576c0c27ae9bc1257b0c0054750a/ABBTC_VTG.pdf
30.
MAN-ES,
2021
, “VTA Project Guide: Variable Turbine Area VTA for TCA Turbochargers,” accessed June 16, 2013, http://turbocharger.man-es.com/docs/defaultsource/shopwaredocuments/vtab1d4f838346f4b74bdc613a07d4f769d.pdf?sfvrsn=96bbb3d1_1
31.
Ono
,
Y.
,
2013
, “
Solutions for Better Engine Performance at Low Load by Mitsubishi Turbochargers
,”
CIMAC Congress
, Shanghai, China, May 13–16, Paper No. 15.
32.
Oatway
,
T.
, and
J
,
H.
,
1973
, “
Investigations on a Variable Geometry Compressor for a Diesel Engine Turbocharger
,” U.S. Army TACOMA, Report No. 11927.
33.
Ebrahimi
,
M.
,
Huang
,
Q.
,
He
,
X.
, and
Zheng
,
X.
,
2017
, “
Effects of Variable Diffuser Vanes on Performance of a Centrifugal Compressor With Pressure Ratio of 8.0
,”
Energies
,
10
(
5
), p.
682
.10.3390/en10050682
34.
Whitfield
,
A.
,
2000
, “
Review of Variable Geometry Techniques Applied to Enhance the Performance of Centrifugal Compressors
,”
International Compressor Engineering Conference
, West Lafayette, IN, July 25–28, Paper No. 1368.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2367&context=icec
35.
Cui
,
Y.
,
Deng
,
K.
, and
Zhang
,
Z.
,
2013
, “
Transient Performance of Three Phase Sequential Turbocharging With Unequal Size Turbochargers
,”
CIMAC Congress
, Shanghai, May 13–16, Paper No. 213.
36.
Qian
,
Y.
,
Li
,
H.
, and
Deng
,
K.
,
2015
, “
An Approximate Matching Method for a Parallel Sequential Turbocharging System
,”
Proc. Inst. Mech. Eng., Part D
,
229
(
8
), pp.
1034
1045
.10.1177/0954407014550844
37.
Xie
,
G.
, and
Xie
,
X.
,
2013
, “
A New Sequential Turbocharging System
,”
CIMAC Congress
, Shanghai, China, May 13–16, Paper No. 334.
38.
Tauzia
,
X.
,
Hetet
,
J. F.
,
Chesse
,
P.
,
Crosshans
,
G.
, and
Mouillard
,
L.
,
1998
, “
Computer Aided Study of the Transient Performances of a Highly Rated Sequentially Turbocharged Marine Diesel Engine
,”
Proc. Inst. Mech. Eng., Part A
,
212
(
3
), pp.
185
196
.10.1243/0957650981536853
39.
Benvenuto
,
G.
, and
Campora
,
U.
,
2002
, “
Dynamic Simulation of a High-Performance Sequentially Turbocharged Marine Diesel Engine
,”
Int. J. Engine Res.
,
3
(
3
), pp.
115
125
.10.1243/14680870260189244
40.
Zheng
,
Z.
,
Feng
,
H.
,
Mao
,
B.
,
Liu
,
H.
, and
Yao
,
M.
,
2018
, “
A Theoretical and Experimental Study on the Effects of Parameters of Two-Stage Turbocharging System on Performance of a Heavy-Duty Diesel Engine
,”
Appl. Therm. Eng
,
129
, pp.
822
832
.10.1016/j.applthermaleng.2017.10.044
41.
Galindo
,
J.
,
Serrano
,
J. R.
,
Climent
,
H.
, and
Varnier
,
O.
,
2010
, “
Impact of Two-Stage Turbocharging Architectures on Pumping Losses of Automotive Engines Based on an Analytical Model
,”
Energy Convers. Manag.
,
51
(
10
), pp.
1958
1969
.10.1016/j.enconman.2010.02.028
42.
Dickinson
,
P.
,
Glover
,
K.
,
Collings
,
N.
,
Yamashita
,
Y.
,
Yashiro
,
Y.
, and
Hoshi
,
T.
,
2015
, “
Real-Time Control of a Two-Stage Serial VGT Diesel Engine Using MPC
,”
IFAC-Papers
,
48
(
15
), pp.
117
123
.10.1016/j.ifacol.2015.10.017
43.
Klima
,
J.
,
Hort
,
V.
, and
Haidn
,
M.
,
2013
, “TCX-
The New High Pressure Turbocharger for Two Stage Turbocharging
,”
CIMAC Congress
, Shanghai, China, May 13–16, Paper No. 206.
44.
Risse
,
S.
,
2016
, “
Turbocharger Solutions for New Engine Generations
,”
CIMAC Congress
, Helsinki, Finland, June 6–10, Paper No. 265.
45.
Auer
,
M.
,
Bauer
,
M.
,
Knafl
,
A.
, and Stiesch, G.,
2016
, “
MAN Diesel & Turbo SE's Medium Speed Gas Engine Portfolio – A Modular Matrix Design
,”
CIMAC Congress
, Helsinski, Finland, June 6–10, Paper No. 163.
46.
Kunkel
,
S.
,
Menage
,
A.
,
Unfug
,
F.
, and Stiesch, G.,
2016
, “
MAN Diesel & Turbo The Next Generation of MDT's Large Bore Diesel Engines
,”
CIMAC Congress
, Helsinski, Findland, June 6–10, Paper No. 181.
47.
Åstrand
,
U.
,
Aatola
,
H.
, and
Myllykoski
,
J.-M.
,
2016
, “
Wärtsilä 31 - World’s Most Efficient Four Stroke Engine
,”
CIMAC Congress
, Helsinski, Finland, June 6–10, Paper No. 225.
48.
Codan
,
E.
,
Mathey
,
C.
, and
Rettig
,
A.
,
2010
, “
2-Stage Turbocharging – Flexibility for Engine Optimisation
,”
CIMAC Congress
, Bergen, Norway, June 14–17, Paper No. 293.https://library.e.abb.com/public/1b04b0465568a75b852578110051ffc0/2-Stage%20Turbocharging.pdf
49.
Carpenter
,
A. L.
,
Beechner
,
T. L.
,
Tews
,
B. E.
,
Yelvington
,
P. E.
,
2018
, “
Hybrid-Electric Turbocharger and High-Speed SiC Variable-Frequency Drive Using Sensorless Control Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122801
.10.1115/1.4040012
50.
Zeng
,
T.
,
Upadhyay
,
D.
,
Sun
,
H.
,
Curtis
,
E.
, and
Zhu
,
G. G.
,
2018
, “
Regenerative Hydraulic Assisted Turbocharger
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102602
.10.1115/1.4039937
51.
Zhu
,
D.
,
Sun
,
Z.
, and
Zheng
,
X.
,
2020
, “
Turbocharging Strategy Among Variable Geometry Turbine, Two-Stage Turbine, and Asymmetric Two-Scroll Turbine for Energy and Emission in Diesel Engines
,”
Proc. Inst. Mech. Eng., Part A
,
234
(
7
), pp.
900
914
.10.1177/0957650919891355
52.
Liu
,
R.
,
Zhang
,
Z.
,
Dong
,
S.
,
Zhou
,
G.
,
2017
, “
High-Altitude Matching Characteristic of Regulated Two-Stage Turbocharger With Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
094501
.10.1115/1.4036283
53.
Yang
,
M.
,
Hu
,
C.
,
Bai
,
Y.
,
Deng
,
K.
,
Gu
,
Y.
,
Qian
,
Y.
, and
Liu
,
B.
,
2019
, “
Matching Method of Electric Turbo Compound for Two-Stroke Low-Speed Marine Diesel Engine
,”
Appl. Therm. Eng
,
158
, p.
113752
.10.1016/j.applthermaleng.2019.113752
54.
Kapoor
,
P.
,
Costall
,
A.
,
Sakellaridis
,
N.
, Hooijer, O., Lammers, R., Tartoussi, H., and Guilain, S.,
2018
, “
Adaptive Turbo Matching: Radial Turbine Design Optimization Through 1D Engine Simulations With Meanline Model in-the-Loop
,”
SAE
Paper No. 2018-01-0974.10.4271/2018-01-0974
55.
Watel
,
E.
,
Pagot
,
A.
,
Pacaud
,
P.
, and Schmitt, J.,
2010
, “
Matching and Evaluating Methods for Euro 6 and Efficient Two-Stage Turbocharging Diesel Engine
,”
SAE
Paper No. 2010-01-1229.10.4271/2010-01-1229
56.
Galindo
,
J.
,
Lujan
,
J. M.
,
Climent
,
H.
,
Guardiola
,
C.
, and
Varnier
,
O.
,
2014
, “
A New Model for Matching Advanced Boosting Systems to Automotive Diesel Engines
,”
SAE Int. J. Engines
,
7
(
1
), pp.
131
144
.10.4271/2014-01-1078
57.
Sun
,
H.
,
Hanna
,
D.
,
Hu
,
L.
,
Curtis
,
E.
,
Yi
,
J.
, and
Tjong
,
J.
,
2014
, “
Steady State Engine Test Demonstration of Performance Improvement With an Advanced Turbocharger
,”
ASME J. Eng. Gas Turbines Power
,
136
(
7
), p.
072601
.10.1115/1.4026611
58.
Gugau
,
M.
,
Roclawski
,
H.
,
2014
, “
On the Design and Matching of Turbocharger Single Scroll Turbines for Pass Car Gasoline Engines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122602
.10.1115/1.4027710
59.
Wu
,
B.
,
Han
,
Z.
,
Yu
,
X.
,
Zhang
,
S.
,
Nie
,
X.
, and
Su
,
W.
,
2019
, “
A Method for Matching Two-Stage Turbocharger System and Its Influence on Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
054502
.10.1115/1.4039461
60.
Ntonas
,
K.
,
Aretakis
,
N.
,
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2020
, “
A Marine Turbocharger Retrofitting Platform
,”
ASME J. Eng. Gas Turbines Power
,
142
(
11
), p.
111008
.10.1115/1.4048652
61.
Mizythras
,
P.
,
Boulougouris
,
E.
, and
Theotokatos
,
G.
,
2021
, “
A Novel Objective Oriented Methodology for Marine Engine–Turbocharger Matching
,”
Int. J. Engine Res.
, epub.10.1177/14680874211039705
62.
Gamma Technologies
,
2019
, “GT Power User Manual,” Gamma Technologies LLC, Westmont, IL.
63.
Dieselnet,
2021
, “Emission Standards,” Dieselnet, accessed June 16, 2021, https://dieselnet.com/standards/
You do not currently have access to this content.