Abstract

Gas turbines featuring sequentially staged combustion systems offer excellent performance in terms of fuel flexibility, part load performance and combined-cycle efficiency. These reheat combustion systems are therefore a key technology for meeting fluctuating power demand in energy infrastructures with increasing proportions of volatile renewable energy sources. To allow the high operational flexibility required to operate in this role, it is essential that the impact of thermoacoustic instabilities is minimized at all engine load conditions. In this case, high-frequency thermoacoustic instabilities in the second “reheat” combustion stage are investigated. Reheat flames are stabilized by both auto-ignition and propagation and, as a result, additional thermoacoustic driving mechanisms are present compared with more conventional swirl-stabilized combustors. Two self-excited thermoacoustic modes have been observed in a 1 MW reheat test rig at atmospheric pressure, one which exhibits limit-cycle behavior while the other is only intermittently unstable. The underlying driving mechanisms for each individual mode have been investigated previously and, in this paper, the two modes are directly compared to understand why these instabilities are each associated with different driving phenomena. It is shown that, due to the different flame regimes present in the reheat combustor, the potential for flame-acoustic coupling is highly dependent on the thermoacoustic mode shape. Different interactions between the flame and acoustics are possible depending on the orientation of the acoustic pressure nodes and antinodes relative to the auto-ignition- and propagation-stabilized flame regions, with the strongest coupling occurring when an antinode is located close to the auto-ignition zone. This provides insight into the significance of the different driving mechanisms and contributes to the ongoing development of models to allow prediction and mitigation of thermoacoustic instabilities in reheat combustion systems, which are crucial for reliable combustor designs in the future.

References

1.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790.10.1115/GT2017-64790
2.
Düsing
,
K. M.
,
Ciani
,
A.
,
Benz
,
U.
,
Eroglu
,
A.
, and
Knapp
,
K.
,
2013
, “
Development of GT24 and GT26 (Upgrades 2011) Reheat Combustors, Achieving Reduced Emissions and Increased Fuel Flexibility
,”
ASME
Paper No. GT2013-95437.10.1115/GT2013-95437
3.
Wang
,
P.
,
Gao
,
Z.
, and
Bertling
,
L.
,
2012
, “
Operational Adequacy Studies of Power Systems With Wind Farms and Energy Storages
,”
IEEE Trans. Power Syst.
,
27
(
4
), pp.
2377
2384
.10.1109/TPWRS.2012.2201181
4.
Güthe
,
F.
,
Hellat
,
J.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultralow Emissions and High Efficiency and Flexibility
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021503
.10.1115/1.2836613
5.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
6.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2006
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, American Institute of Aeronautics and Astronautics, Inc.,
Reston, VA
.
7.
Culick
,
F. E. C.
,
2006
,
Unsteady Motions in Combustion Chambers for Propulsion Systems
,
AGARDograph
NATO RTO-AG-AVT-039.
8.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
9.
Singla
,
G.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Combustion Dynamics Validation of an Annular Reheat Combustor
,”
ASME
Paper No. GT2012-68684.10.1115/GT2012-68684
10.
Schuermans
,
B.
,
Bothien
,
M.
,
Maurer
,
M.
, and
Bunkute
,
B.
,
2015
, “
Combined Acoustic Damping-Cooling System for Operational Flexibility of GT26/GT24 Reheat Combustors
,”
ASME
Paper No. GT2015-42287.10.1115/GT2015-42287
11.
Shreekrishna
,., and
Lieuwen
,
T.
,
2009
, “
High Frequency Premixed Flame Response to Acoustic Perturbations
,”
AIAA
Paper No. 2009-3261.10.2514/6.2009-3261
12.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press, Cambridge, UK
.
13.
Schimek
,
S.
,
Ćosić
,
B.
,
Moeck
,
J. P.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Amplitude-Dependent Flow Field and Flame Response to Axial and Tangential Velocity Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
081501
.10.1115/1.4029368
14.
Krebs
,
W.
,
Krediet
,
H.
,
Portillo
,
E.
,
Hermeth
,
S.
,
Poinsot
,
T.
,
Schimek
,
S.
, and
Paschereit
,
O.
,
2013
, “
Comparison of Nonlinear to Linear Thermoacoustic Stability Analysis of a Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
8
), p.
081503
.10.1115/1.4023887
15.
Krediet
,
H. J.
,
Beck
,
C. H.
,
Krebs
,
W.
, and
Kok
,
J. B.
,
2013
, “
Saturation Mechanism of the Heat Release Response of a Premixed Swirl Flame Using LES
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1223
1230
.10.1016/j.proci.2012.06.140
16.
Berger
,
F. M.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p. 041507.10.1115/1.4038036
17.
Hofmeister
,
T.
, and
Sattelmayer
,
T.
,
2021
, “
Amplitude-Dependent Damping and Driving Rates of High-Frequency Thermoacoustic Oscillations in a Lab-Scale Lean-Premixed Gas Turbine Combustor
,”
ASME
Paper No. GT2021-58456.10.1115/GT2021-58456
18.
McClure
,
J.
,
Berger
,
F. M.
,
Bertsch
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2022
, “
Observation of Reactive Shear Layer Modulation Associated With High-Frequency Transverse Thermoacoustic Oscillations in a Gas Turbine Reheat Combustor Experiment
,”
Int. J. Spray Combust. Dyn.
,
14
(
1–2
), pp.
131
142
.10.1177/17568277221088192
19.
McClure
,
J.
,
Berger
,
F. M.
,
Bertsch
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2021
, “
Self-Excited High-Frequency Transverse Limit-Cycle Oscillations and Associated Flame Dynamics in a Gas Turbine Reheat Combustor Experiment
,”
ASME
Paper No. GT2021-59540.10.1115/GT2021-59540
20.
Berger
,
F. M.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Kaufmann
,
J.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors - Part I: Experimental Investigation of Local Flame Response
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071501
.10.1115/1.4035591
21.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071502
.10.1115/1.4035592
22.
Ciani
,
A.
,
Eroglu
,
A.
,
Güthe
,
F.
, and
Paikert
,
B.
,
2010
, “
Full-Scale Atmospheric Tests of Sequential Combustion
,”
ASME
Paper No. GT2010-22891.10.1115/GT2010-22891
23.
Berger
,
F. M.
,
Hummel
,
T.
,
Romero
,
P.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
A Novel Reheat Combustor Experiment for the Analysis of High-Frequency Flame Dynamics - Concept and Experimental Validation
,”
ASME
Paper No. GT2018-77101.10.1115/GT2018-77101
24.
Romero
,
P.
,
Berger
,
F. M.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Numerical Design of a Novel Reheat Combustor Experiment for the Analysis of High-Frequency Flame Dynamics
,”
ASME
Paper No. GT2018-77034.10.1115/GT2018-77034
25.
Lauer
,
M.
, and
Sattelmayer
,
T.
,
2010
, “
On the Adequacy of Chemiluminescence as a Measure for Heat Release in Turbulent Flames With Mixture Gradients
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061502
.10.1115/1.4000126
26.
Güthe
,
F.
, and
Schuermans
,
B.
,
2007
, “
Phase-Locking in Post-Processing for Pulsating Flames
,”
Meas. Sci. Technol.
,
18
(
9
), pp.
3036
3042
.10.1088/0957-0233/18/9/039
27.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
.10.1016/j.ymssp.2010.07.018
28.
Hertweck
,
M.
,
Berger
,
F. M.
,
Hummel
,
T.
, and
Sattelmayer
,
T.
,
2017
, “
Impact of the Heat Release Distribution on High-Frequency Transverse Thermoacoustic Driving in Premixed Swirl Flames
,”
Int. J. Spray Combust. Dyn.
,
9
(
3
), pp.
143
154
.10.1177/1756827716672471
29.
Zellhuber
,
M.
,
Schwing
,
J.
,
Schuermans
,
B.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2014
, “
Experimental and Numerical Investigation of Thermoacoustic Sources Related to High-Frequency Instabilities
,”
Int. J. Spray Combust. Dyn.
,
6
(
1
), pp.
1
34
.10.1260/1756-8277.6.1.1
30.
Buschhagen
,
T.
,
Gejji
,
R.
,
Philo
,
J.
,
Tran
,
L.
,
Bilbao
,
J. E. P.
, and
Slabaugh
,
C. D.
,
2019
, “
Self-Excited Transverse Combustion Instabilities in a High Pressure Lean Premixed Jet Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5181
5188
.10.1016/j.proci.2018.07.086
31.
Zellhuber
,
M.
,
Schuermans
,
B.
, and
Polifke
,
W.
,
2014
, “
Impact of Acoustic Pressure on Autoignition and Heat Release
,”
Combust. Theory Modell.
,
18
(
1
), pp.
1
31
.10.1080/13647830.2013.817609
32.
Gant
,
F.
,
Bunkute
,
B.
, and
Bothien
,
M. R.
,
2021
, “
Reheat Flames Response to Entropy Waves
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6271
6278
.10.1016/j.proci.2020.05.007
33.
Gopalakrishnan
,
H. S.
,
Gruber
,
A.
, and
Moeck
,
J.
,
2021
, “
Response of Autoignition-Stabilized Flames to One-Dimensional Disturbances: Intrinsic Response
,”
ASME
Paper No. GT2021-59351.10.1115/GT2021-59351
34.
Schulz
,
O.
, and
Noiray
,
N.
,
2019
, “
Combustion Regimes in Sequential Combustors: Flame Propagation and Autoignition at Elevated Temperature and Pressure
,”
Combust. Flame
,
205
, pp.
253
268
.10.1016/j.combustflame.2019.03.014
35.
Goy
,
C. J.
,
Moran
,
A. J.
, and
Thomas
,
G. O.
,
2001
, “
Autoignition Characteristics of Gaseous Fuels at Representative Gas Turbine Conditions
,”
ASME
Paper No. 2001-GT-0051.10.1115/2001-GT-0051
36.
Kim
,
J.
,
Gillman
,
W.
,
Wu
,
D.
,
Emerson
,
B.
,
Acharya
,
V.
,
Mckinney
,
R.
,
Lieuwen
,
T.
,
Isono
,
M.
, and
Saitoh
,
T.
,
2020
, “
Identification of High-Frequency Transverse Acoustic Modes in Multi-Nozzle Can Combustors
,”
ASME
Paper No. GT2020-16130.10.1115/GT2020-16130
You do not currently have access to this content.