Abstract

Highly compact and efficient design makes inward flow radial (IFR) turbine a preferred choice for kilowatt scale supercritical CO2 (sCO2) power blocks. The influence of geometric design parameters on sCO2 turbine performance differs from gas turbines because of their small size, high rotational speeds, and lower viscous losses. The paper presents a computational fluid dynamics (CFD) study for a 100 kW IFR turbine to arrive at optimal geometric design parameters—axial length, outlet-to-inlet radius ratio, number of rotor blades, and velocity ratio, and understand their influence on the turbine's performance. The results are compared with well-established gas turbine correlations in the specific speed range of 0.2 to 0.8 to understand the implications on sCO2 IFR turbines. The analysis shows significant variations in the optimal values of design parameters when compared with gas turbines. It is found that sCO2 turbines require fewer blades and higher velocity ratios for optimal performance. The maximum turbine efficiency (∼82%) is achieved at a lower specific speed of ∼0.4 compared to a gas turbine with specific speed varying between 0.55 and 0.65. Additionally, higher negative incidence angles in the range of −50 deg to −55 deg are required at high specific speeds to counter the Coriolis effect in the rotor passage. The paper presents the variation of stator, rotor, and exit kinetic energy losses with specific speeds. The cumulative losses are found to be minimum at the specific speed of ∼0.4.

References

1.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
49
, pp.
1187
1196
.10.1016/j.egypro.2014.03.128
2.
Hoque
,
S. J.
,
Kumar
,
P.
, and
Dutta
,
P.
,
2021
, “
Concentrating Solar Powered Transcritical CO2 Power Generation Cycle for the Union Territory of Ladakh, India
,”
Proceedings of 26th National 4th International ISHMT-ASTFE Heat Mass Transfer Conference
,
IIT Madras
,
Chennai
,
India
, Dec. 17–20, pp.
2421
2426
.10.1615/IHMTC-2021.3660
3.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.10.1016/j.nucengdes.2009.03.017
4.
Ahn
,
Y.
, and
Lee
,
J. I.
,
2014
, “
Study of Various Brayton Cycle Designs for Small Modular Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
276
, pp.
128
141
.10.1016/j.nucengdes.2014.05.032
5.
Xie
,
T.
,
Vermeersch
,
M.
, and
Held
,
T.
,
2013
, “
Supercritical Carbon Dioxide Power Cycle for Waste Heat Recovery
,” U.S. Patent No. 9,341,084.
6.
Hoque
,
S. J.
, and
Kumar
,
P.
,
2021
, “
Analysis of a Dual Recuperated Dual Expansion Supercritical CO2 Cycle for Waste Heat Recovery Applications
,”
Trans. Indian Natl. Acad. Eng
,
6
(
2
), pp.
439
459
.10.1007/s41403-021-00211-4
7.
Rohlik
,
H.
,
1968
, “Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TN-D-4384
.https://ntrs.nasa.gov/citations/19680006474
8.
Japikse
,
D.
,
1984
,
Introduction to Turbomachinery Analysis,
Concepts ETI, Incorporated, White River Junction, VT.
9.
Rodgers
,
C.
, and
Geiser
,
R.
,
1987
, “
Performance of a High-Efficiency Radial/Axial Turbine
,”
ASME J. Turbomach
,
109
(
2
), pp.
151
154
.10.1115/1.3262077
10.
Whitfield
,
A.
, and
Baines
,
N. C.
,
1990
,
Design of Radial Turbomachines
, Longman Scientific & Technical, UK.https://www.osti.gov/biblio/6550042
11.
Glassman
,
A. J.
,
1995
, “
Enhanced Analysis and Users Manual for Radial-Inflow Turbine Conceptual Design Code RTD
,” Lewis Research Center, NASA Contract Report No. 95454.
12.
Aungier
,
R. H.
,
2010
,
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
, ASME Press, New York.
13.
Dixon
,
S.
, and
Hall
,
C.
,
2010
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
, Oxford, UK.
14.
Persichilli, M., Kacludis, A., Zdankiewicz, E., and Held, T., 2012, “Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 Can Displace Steam,”
Power-Gen India & Central Asia
, Pragati Maidan, New Delhi, India, Apr. 19–21, pp.
19
21
.https://www.echogen.com/documents/why-sco2-can-displace-steam.pdf
15.
Hoque
,
S. J.
, and
Kumar
,
P.
,
2021
, “
Theoretical Estimation of Minimum and Maximum Allowable Rotational Speed of Supercritical CO2 Inward Flow Radial Turbine
,”
ASME
Paper No. GT2017-64693.10.1115/GT2017-64693
16.
Wei
,
Z.
,
2014
, “
Meanline Analysis of Radial Inflow Turbines at Design and Off-Design Conditions
,” Master's thesis,
Carleton University
, Ottawa, ON, p.
157
.
17.
Qi
,
J.
,
Reddell
,
T.
,
Qin
,
K.
,
Hooman
,
K.
, and
Jahn
,
I. H. J.
,
2017
, “
Supercritical CO2 Radial Turbine Design Performance as a Function of Turbine Size Parameters
,”
ASME J. Turbomach.
,
139
(
8
), p.
081008
.10.1115/1.4035920
18.
Lv
,
G.
,
Yang
,
J.
,
Shao
,
W.
, and
Wang
,
X.
,
2018
, “
Aerodynamic Design Optimization of Radial-Inflow Turbine in Supercritical CO2 Cycles Using a One-Dimensional Model
,”
Energy Convers. Manag
,
165
, pp.
827
839
.10.1016/j.enconman.2018.03.005
19.
Zhang
,
H.
,
Zhao
,
H.
,
Deng
,
Q.
, and
Feng
,
Z.
,
2015
, “
Aerothermodynamic Design and Numerical Investigation of Supercritical Carbon Dioxide Turbine
,”
ASME
Paper No. GT2015-42619.10.1115/GT2015-42619
20.
Zhang
,
D.
,
Wang
,
Y.
, and
Xie
,
Y.
,
2018
, “
Investigation Into Off-Design Performance of a S-CO2 Turbine Based on Concentrated Solar Power
,”
Energies
,
11
(
11
), p.
3014
.10.3390/en11113014
21.
Wang
,
Y.
,
Li
,
J.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2020
, “
Numerical Investigation on Aerodynamic Performance of SCO2 and Air Radial-Inflow Turbines With Different Solidity Structures
,”
Appl. Sci.
,
10
(
6
), p.
2087
.https://www.researchgate.net/publication/340045126_Numerical_Investigation_on_Aerodynamic_Performance_of_SCO2_and_Air_Radial- Inflow_Turbines_with_Different_Solidity_Structures
22.
Unglaube
,
T.
, and
Chiang
,
H. W. D.
,
2018
, “
Small Scale Supercritical CO2 Radial Inflow Turbine Meanline Design Considerations
,”
ASME
Paper No. GT2018-75356.10.1115/GT2018-75356
23.
Jamieson
,
A. W. H.
,
1955
, The Radial Turbine, Gas Turbine Principles and Practice, George Newnes, London, UK, p.
511
.
24.
Stanitz
,
J. D.
,
1951
,
Some Theoretical Aerodynamic Investigations of Impellers in Radial-and Mixed Flow Centrifugal Compressors
,
ASME
Paper No. GT2003-38971.10.1115/GT2003-38971
25.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties–REFPROP
,
National Standard Reference Data Series National Institute of Standards and Technology
,
Gaithersburg, MD
.
26.
Logan
,
E. J.
,
1981
, Turbomachinery: Basic Theory and Applications, Marcel-Dekker, New York.
27.
Rohlik
,
H. E.
,
1975
,
Turbine Design and Application: Radial-Inflow Turbine
,
NASA
,
Washington, DC
, p.
392
.
28.
Rodgers
,
C.
,
1987
, “
Mainline Performance Prediction for Radial Inflow Turbines
,” Technical Report on Von Karman Institute for Fluid Dynamics, Lecture Series on Small High Pressure Ratio Turbines, 29 p(SEE N 88-14364 06-37).
29.
Woolley
,
N. H.
, and
Hatton
,
A. P.
,
1973
, “
Viscous Flow in Radial Turbomachine Blade Passages
,”
Conference on Heat Fluid Flow Steam Gas Turbine Plant
, Coventry, UK, Apr., pp.
175
181
.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002065193415668
30.
Yeo
,
J.
,
1990
, “
Pulsating Flow Behaviour in a Twin-Entry Vaneless Radial Inflow Turbine
,” Ph.D. thesis,
University of London
, London, UK.
You do not currently have access to this content.