Abstract

The effect of triple injection strategies in a diesel engine to reduce cold start emissions were experimentally and computationally investigated in this work. The experiments were performed using a 1.9 L four-cylinder, turbocharged compression ignition engine with diesel fuel. As a representative of the cold start condition in the diesel engine, a low load condition of 1500 rpm and 2 bar brake mean effective pressure (BMEP) was chosen as the fixed condition for this study. The injection strategy made use of a late post injection to reduce catalyst light-off time. The pilot and main injections are fixed and the post injection timing is swept later into the expansion stroke to increase exhaust enthalpy available to heat the aftertreatment system. To further understand the source of hydrocarbon (HC) emissions from late injections, equivalent experiments were conducted with a mixture of n-heptane and iso-octane that matched the reactivity of the diesel fuel. The mixture of primary reference fuels (i.e., PRF 34) obtained by matching the cetane number (CN) of diesel fuel, showed similar combustion characteristics of diesel, but is much more volatile due to lighter components in the PRF mixture. The increased volatility of PRF 34 suppressed liquid fuel impingement on the cylinder liner, which isolated liner impingement as a possible source of HC emissions. Simulations were also performed for the present engine configuration and operating conditions in a sector mesh using CONVERGE. The physical properties of diesel fuel were modeled using a five-component surrogate. The chemical kinetics of the diesel fuel were modeled with a reduced n-heptane model. The simulations were able to capture the experimental trends of combustion characteristics and emissions. The HC emissions were observed to increase for both fuels with retarded post injection timings in engine experiments. PRF 34 had comparable HC emissions to diesel experiments, which indicated that the liner impingement is not the main source of the increase in HC emissions. Overmixing of the fuel and air was identified as the major cause of increase in HC emissions. Additionally, exhaust gas recirculation (EGR) also intensified the overmixing phenomenon and thereby increase in HC emissions.

References

1.
EPA
,
2014
, “
Tier 3 Motor Vehicle Emission and Fuel Standards
,” EPA, Washington, DC, Standard.https://www.govinfo.gov/content/pkg/FR-2014-04-28/pdf/2014-06954.pdf
2.
Neely
,
G. D.
,
Sarlashkar
,
J. V.
, and
Mehta
,
D.
,
2013
, “
Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions
,”
SAE Int. J. Engines
,
6
(
2
), pp.
1009
1020
.10.4271/2013-01-1301
3.
Reiter
,
M. S.
, and
Kockelman
,
K. M.
,
2016
, “
The Problem of Cold Starts: A Closer Look at Mobile Source Emissions Levels
,”
Transp. Res., Part D
,
43
, pp.
123
132
.10.1016/j.trd.2015.12.012
4.
Lindhjem
,
C. E.
,
1997
, “
Conversion Factors for Hydrocarbon Emission Components
,” EPA, Washington, DC, Report No.
EPA420-R-05-015
.https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=03E68143EED3AFC1BF24A029FD9F94A0?doi=10.1.1.360.2602&rep=rep1&type=pdf
5.
Kim
,
C. H.
,
Paratore
,
M.
,
Gonze
,
E.
,
Solbrig
,
C.
, and
Smith
,
S.
,
2012
, “
Electrically Heated Catalysts for Cold-Start Emissions in Diesel Aftertreatment
,”
SAE
Paper No. 2012-01-1092.10.4271/2012-01-1092
6.
Ratzberger
,
R.
,
Kraxner
,
T.
,
Pramhas
,
J.
,
Hadl
,
K.
,
Eichlseder
,
H.
, and
Buergler
,
L.
,
2015
, “
Evaluation of Valve Train Variability in Diesel Engines
,”
SAE Int. J. Engines
,
8
(
5
), pp.
2379
2393
.10.4271/2015-24-2532
7.
Miwa
,
J.
,
Mehta
,
D.
, and
Koci
,
C.
,
2016
, “
Evaluation of Cold Start Technologies on a 3 L Diesel Engine
,”
SAE
Paper No. 2016-01-0823.10.4271/2016-01-0823
8.
Neely
,
G. D.
,
Mehta
,
D.
, and
Sarlashkar
,
J.
,
2014
, “
Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions—Part 2
,”
SAE Int. J. Engines
,
7
(
3
), pp.
1302
1310
.10.4271/2014-01-1552
9.
Pierpont
,
D.
,
Montgomery
,
D.
, and
Reitz
,
R. D.
,
1995
, “
Reducing Particulate and NOx Using Multiple Injections and EGR in a DI Diesel
,”
SAE Trans.
,
104
, pp.
171
183
.10.4271/950217
10.
Malaguti
,
S.
,
Cantore
,
G.
,
Fontanesi
,
S.
,
Lupi
,
R.
, and
Rosetti
,
A.
,
2009
, “
CFD Investigation of Wall Wetting in a GDI Engine Under Low Temperature Cranking Operations
,”
SAE
Paper No. 2009-01-0704.10.4271/2009-01-0704
11.
Malaguti
,
S.
,
Fontanesi
,
S.
, and
Severi
,
E.
,
2010
, “
Numerical Analysis of GDI Engine Cold-Start at Low Ambient Temperatures
,”
SAE
Paper No. 2010-01-2123.10.4271/2010-01-2123
12.
Yang
,
X.
,
Kuo
,
T.-W.
,
Singh
,
K.
,
Hattar
,
R.
, and
Zeng
,
Y.
,
2017
, “
Cold-Start CFD Simulation of Spark-Ignition Direct-Injection Engine
,”
ASME
Paper No. ICEF2017-3630.10.1115/ICEF2017-3630
13.
Ravindran
,
A. C.
,
Kokjohn
,
S. L.
, and
Petersen
,
B.
,
2021
, “
Improving Computational Fluid Dynamics Modeling of Direct Injection Spark Ignition Cold-Start
,”
Int. J. Engine Res.
,
22
(
9
), pp.
2786
2802
.10.1177/1468087420963982
14.
Williams
,
F. A.
,
1985
, “
Turbulent Combustion
,”
The Mathematics of Combustion
,
J.
Buckmaster
, ed.,
SIAM
,
Philadelphia, PA
, pp.
97
131
.
15.
Ravindran
,
A. C.
,
Kokjohn
,
S. L.
, and
Petersen
,
B.
,
2022
, “
G-Equation Based Ignition Model for Direct Injection Spark Ignition Engines
,”
Int. J. Engine Res.
,
23
(
8
), pp.
1339
1352
.10.1177/14680874211013990
16.
Zhao
,
L.
,
Ameen
,
M.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Kumar
,
P.
,
Tzanetakis
,
T.
, and
Traver
,
M.
,
2020
, “
Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine
,”
SAE
Paper No. 2020-01-0778.10.4271/2020-01-0778
17.
Li
,
J.
,
Matthews
,
R. D.
,
Stanglmaier
,
R. H.
,
Roberts
,
C. E.
, and
Anderson
,
R. W.
,
1999
, “
Further Experiments on the Effects of in-Cylinder Wall Wetting on HC Emissions From Direct Injection Gasoline Engines
,”
SAE
Paper No. 1999-01-3661.10.4271/1999-01-3661
18.
Stanglmaier
,
R. H.
,
Li
,
J.
, and
Matthews
,
R. D.
,
1999
, “
The Effect of in-Cylinder Wall Wetting Location on the HC Emissions From SI Engines
,”
SAE
Paper No. 1999-01-0502.10.4271/1999-01-0502
19.
Drake
,
M. C.
,
Fansler
,
T. D.
,
Solomon
,
A. S.
, and
Szekely
, and
G.
, Jr.
,
2003
, “
Piston Fuel Films as a Source of Smoke and Hydrocarbon Emissions From a Wall-Controlled Spark-Ignited Direct-Injection Engine
,”
SAE
Paper No. 2003-01-0547.10.4271/2003-01-0547
20.
Yanowitz
,
J.
,
Ratcliff
,
M. A.
,
McCormick
,
R. L.
,
Taylor
,
J. D.
, and
Murphy
,
M. J.
,
2014
, “
Compendium of Experimental Cetane Numbers
,” NREL, Golden, CO, Report No.
NREL/TP-5400-67585
.https://www.nrel.gov/docs/fy17osti/67585.pdf
21.
ASTM
,
2017
, “
Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D240-09
.10.1520/D0240-19
22.
ASTM
,
2016
, “
Standard Test Method for Cetane Number of Diesel Fuel Oil
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D613
.10.1520/D0613-18AE01
23.
ASTM
,
2016
, “
Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D4052
.10.1520/D4052-22
24.
Han
,
D.
,
Li
,
K.
,
Duan
,
Y.
,
Lin
,
H.
, and
Huang
,
Z.
,
2017
, “
Numerical Study on Fuel Physical Effects on the Split Injection Processes on a Common Rail Injection System
,”
Energy Convers. Manag.
,
134
, pp.
47
58
.10.1016/j.enconman.2016.12.026
25.
Richards
,
K.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
2021
,
CONVERGE (v2.4.0)
,
Convergent Science, Inc
.,
Madison, WI
.
26.
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P.
,
2014
, “
Modeling Turbulent Combustion Using a Rans Model, Detailed Chemistry, and Adaptive Mesh Refinement
,”
SAE
Paper No. 2014-01-1116.10.4271/2014-01-1116
27.
O'Rourke
,
P. J.
,
1989
, “
Statistical Properties and Numerical Implementation of a Model for Droplet Dispersion in a Turbulent Gas
,”
J. Comput. Phys.
,
83
(
2
), pp.
345
360
.10.1016/0021-9991(89)90123-X
28.
Patel
,
A.
,
Kong
,
S.-C.
, and
Reitz
,
R. D.
,
2004
, “
Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations
,”
SAE
Paper 2004-01-0558.10.4271/2004-01-0558
29.
Naser
,
N.
,
Jaasim
,
M.
,
Atef
,
N.
,
Chung
,
S. H.
,
Im
,
H. G.
, and
Sarathy
,
S. M.
,
2017
, “
On the Effects of Fuel Properties and Injection Timing in Partially Premixed Compression Ignition of Low Octane Fuels
,”
Fuel
,
207
, pp.
373
388
.10.1016/j.fuel.2017.06.048
30.
Atef
,
N.
,
Badra
,
J.
,
Jaasim
,
M.
,
Im
,
H. G.
, and
Sarathy
,
S. M.
,
2018
, “
Numerical Investigation of Injector Geometry Effects on Fuel Stratification in a GCI Engine
,”
Fuel
,
214
, pp.
580
589
.10.1016/j.fuel.2017.11.036
31.
Mueller
,
C. J.
,
Cannella
,
W. J.
,
Bays
,
J. T.
,
Bruno
,
T. J.
,
DeFabio
,
K.
,
Dettman
,
H. D.
,
Gieleciak
,
R. M.
,
Huber
,
M. L.
,
Kweon
,
C.-B.
,
McConnell
,
S. S.
,
Pitz
,
W. J.
, and
Ratcliff
,
M. A.
,
2016
, “
Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties
,”
Energy Fuels
,
30
(
2
), pp.
1445
1461
.10.1021/acs.energyfuels.5b02879
32.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE
Paper No. 960034.10.4271/960034
33.
ASTM,
2017
, “
Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D86
.10.1520/D0086-20B
You do not currently have access to this content.