Abstract

Dynamic vibration absorbers array (DVAA) is a newly developed and promising technique for vibration attenuation of integrally bladed disk (blisk) by mounting underneath the disk. In this paper, the vibration attenuation characteristics and energy dissipation mechanism of DVAA for tuned and mistuned blisk are parametrically studied, where the viscous and frictional damping are both considered. The lumped parameter model of a blisk is employed for the convenience of parametrical study. Analytical power flow formulas within the blisk–DVAA system are derived to characterize the dynamic interaction between blisk and DVAA. Four typical modes of a blisk with different nodal diameters and deformation characteristics are selected to evaluate the performance of DVAA. Then, the effects of the mass ratio, the frequency ratio and the damping ratio of DVAA on the vibration of tuned and mistuned blisk are addressed. Numerical results show that a light DVAA can significantly mitigate the resonant amplitudes of the tuned and mistuned blisk. Such damper is effective for the modes with different modal characteristics and can provide robust vibration attenuation performance against random mistuning.

References

1.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
2.
Chen
,
Y.
,
Zhai
,
J.
, and
Han
,
Q.
,
2016
, “
Vibration and Damping Analysis of the Bladed Disk With Damping Hard Coating on Blades
,”
Aerosp. Sci. Technol.
,
58
, pp.
248
257
.10.1016/j.ast.2016.08.016
3.
Gao
,
F.
, and
Sun
,
W.
,
2019
, “
Nonlinear Finite Element Modeling and Vibration Analysis of the Blisk Deposited Strain-Dependent Hard Coating
,”
Mech. Syst. Signal Process.
,
121
, pp.
124
143
.10.1016/j.ymssp.2018.11.028
4.
Mitra
,
M.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2019
, “
Dynamic Model Order Reduction of Blisks With Nonlinear Damping Coatings Using Amplitude Dependent Mistuning
,”
Int. J. Non-Linear Mech.
,
111
, pp.
49
59
.10.1016/j.ijnonlinmec.2019.01.016
5.
Xu
,
K.
,
Yan
,
X.
,
Du
,
D.
, and
Sun
,
W.
,
2021
, “
Control of Mistuning Level Using Hard Coating for Blisks Based on Mistuning Identification Technique
,”
Aerosp. Sci. Technol.
,
111
, p.
106526
.10.1016/j.ast.2021.106526
6.
Laxalde
,
D.
,
Thouverez
,
F.
,
Sinou
,
J. J.
, and
Lombard
,
J. P.
,
2007
, “
Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers
,”
Eur. J. Mech. A/Solids
,
26
(
4
), pp.
676
687
.10.1016/j.euromechsol.2006.10.002
7.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J.-P.
,
2010
, “
Forced Response Analysis of Integrally Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011013
.10.1115/1.4000763
8.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B. I.
,
2017
, “
Reduced-Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012507
.10.1115/1.4034212
9.
Baek
,
S.
, and
Epureanu
,
B.
,
2017
, “
Reduced-Order Modeling of Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061011
.10.1115/1.4036952
10.
Tang
,
W.
, and
Epureanu
,
B. I.
,
2017
, “
Nonlinear Dynamics of Mistuned Bladed Disks With Ring Dampers
,”
Int. J. Non-Linear Mech.
,
97
, pp.
30
40
.10.1016/j.ijnonlinmec.2017.08.001
11.
Tang
,
W.
, and
Epureanu
,
B. I.
,
2019
, “
Geometric Optimization of Dry Friction Ring Dampers
,”
Int. J. Non-Linear Mech.
,
109
, pp.
40
49
.10.1016/j.ijnonlinmec.2018.11.001
12.
Baek
,
S.
, and
Epureanu
,
B.
,
2020
, “
Contact Model Identification for Friction Ring Dampers in Blisks With Reduced Order Modeling
,”
Int. J. Non-Linear Mech.
,
120
, p.
103374
.10.1016/j.ijnonlinmec.2019.103374
13.
Zhou
,
B.
,
Thouverez
,
F.
, and
Lenoir
,
D.
,
2014
, “
Vibration Reduction of Mistuned Bladed Disks by Passive Piezoelectric Shunt Damping Techniques
,”
AIAA J.
,
52
(
6
), pp.
1194
1206
.10.2514/1.J052202
14.
Liu
,
J.
,
Li
,
L.
,
Huang
,
X.
, and
Jezequel
,
L.
,
2017
, “
Dynamic Characteristics of the Blisk With Synchronized Switch Damping Based on Negative Capacitor
,”
Mech. Syst. Signal Process.
,
95
, pp.
425
445
.10.1016/j.ymssp.2017.03.049
15.
Kelley
,
C. R.
,
Lopp
,
G. K.
, and
Kauffman
,
J. L.
,
2021
, “
Optimizing Piezoelectric Material Location and Size for Multiple-Mode Vibration Reduction of Turbomachinery Blades
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021007
.10.1115/1.4048263
16.
Wu
,
Y. G.
,
Li
,
L.
,
Fan
,
Y.
,
Zucca
,
S.
,
Gastaldi
,
C.
, and
Ma
,
H. Y.
,
2020
, “
Design of Dry Friction and Piezoelectric Hybrid Ring Dampers for Integrally Bladed Disks Based on Complex Nonlinear Modes
,”
Comput. Struct.
,
233
, p.
106237
.10.1016/j.compstruc.2020.106237
17.
Hartung
,
A.
,
Retze
,
U.
, and
Hackenberg
,
H.-P.
,
2017
, “
Impulse Mistuning of Blades and Vanes
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072502
.10.1115/1.4035594
18.
Olson
,
B. J.
, and
Shaw
,
S. W.
,
2010
, “
Vibration Absorbers for a Rotating Flexible Structure With Cyclic Symmetry: Nonlinear Path Design
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
149
182
.10.1007/s11071-009-9587-8
19.
Sinha
,
A.
,
2018
, “
Vibration Absorbers for a Mistuned Bladed Disk
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051002
.10.1115/1.4039539
20.
Lupini
,
A.
,
Mitra
,
M.
, and
Epureanu
,
B. I.
,
2019
, “
Application of Tuned Vibration Absorber Concept to Blisk Ring Dampers: A Nonlinear Study
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101016
.10.1115/1.4044684
21.
Wang
,
S.
,
Yang
,
G.
,
Ji
,
L.
,
Bi
,
C.
, and
Zheng
,
C.
,
2022
, “
Multi-Mode Vibration Attenuation of Mistuned Bladed Disks by Frictional Tuned Mass Dampers Array
,”
J. Sound Vib.
,
536
, p.
117176
.10.1016/j.jsv.2022.117176
22.
Elias
,
S.
, and
Matsagar
,
V.
,
2017
, “
Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers
,”
Annu. Rev. Control
,
44
, pp.
129
156
.10.1016/j.arcontrol.2017.09.015
23.
Jones
,
D. I. G.
,
Nashif
,
A. D.
, and
Stargardter
,
H.
,
1975
, “
Vibrating Beam Dampers for Reducing Vibrations in Gas Turbine Blades
,”
ASME J. Eng. Power
,
97
(
1
), pp.
111
116
.10.1115/1.3445888
24.
Hollkamp
,
J. J.
,
Bagley
,
R. L.
, and
Gordon
,
R. W.
,
1999
, “
A Centrifugal Pendulum Absorber for Rotating, Hollow Engine Blades
,”
J. Sound Vib.
,
219
(
3
), pp.
539
549
.10.1006/jsvi.1998.1964
25.
Olson
,
B. J.
,
Shaw
,
S. W.
, and
Pierre
,
C.
,
2005
, “
Order-Tuned Vibration Absorbers for Cyclic Rotating Flexible Structures
,”
ASME
Paper No. DETC2005-84641.10.1115/DETC2005-84641
26.
Olson
,
B. J.
, and
Shaw
,
S. W.
,
2008
, “
Vibration Absorbers for Cyclic Rotating Flexible Structures: Linear and Nonlinear Tuning
,”
ASME
Paper No. SMASIS2008-632.10.1115/SMASIS2008-632
27.
Gozen
,
S.
,
Olson
,
B. J.
,
Shaw
,
S. W.
, and
Pierre
,
C.
,
2012
, “
Resonance Suppression in Multi-Degree-of-Freedom Rotating Flexible Structures Using Order-Tuned Absorbers
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061016
.10.1115/1.4007564
28.
Mitra
,
M.
,
Lupini
,
A.
, and
Epureanu
,
B. I.
,
2019
, “
A Study on the Application of Tuned Vibration Absorbers to Nominally Cyclic Structures
,”
ASME
Paper No. GT2019-90167.10.1115/GT2019-90167
29.
Lupini
,
A.
, and
Epureanu
,
B. I.
,
2021
, “
A Friction-Enhanced Tuned Ring Damper for Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
143
(
1
), p.
011002
.10.1115/1.4049203
30.
Lupini
,
A.
,
Shim
,
J.
, and
Epureanu
,
B. I.
,
2020
, “
Experimental and Computational Study of a Tuned Damper With Frictional Contacts
,”
AIAA J.
,
58
(
8
), pp.
3607
3613
.10.2514/1.J059393
31.
Mitra
,
M.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2016
, “
Adaptive Microslip Projection for Reduction of Frictional and Contact Nonlinearities in Shrouded Blisks
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041016
.10.1115/1.4033003
32.
Lupini
,
A.
, and
Epureanu
,
B. I.
,
2019
, “
A Conditioning Technique for Projection-Based Reduced Order Models
,”
Comput. Methods Appl. Mech. Eng.
,
349
, pp.
251
265
.10.1016/j.cma.2019.02.020
33.
Mitra
,
M.
, and
Epureanu
,
B. I.
,
2019
, “
Dynamic Modeling and Projection-Based Reduction Methods for Bladed Disks With Nonlinear Frictional and Intermittent Contact Interfaces
,”
ASME Appl. Mech. Rev.
,
71
(
5
), p.
050803
.10.1115/1.4043083
34.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
106
(
2
), pp.
204
210
.10.1115/1.3269170
35.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.10.1115/1.1539868
36.
Yang
,
J.
,
2013
, “
Power Flow Analysis of Nonlinear Dynamical Systems
,”
Doctoral thesis
,
University of Southampton
,
Southampton, UK
.https://www.researchgate.net/publication/299464066_Power_flow_analysis_of_nonlinear_dynamical_systems
37.
Skolfield
,
J. K.
, and
Escobedo
,
A. R.
,
2022
, “
Operations Research in Optimal Power Flow: A Guide to Recent and Emerging Methodologies and Applications
,”
Eur. J. Oper. Res.
,
300
(
2
), pp.
387
404
.10.1016/j.ejor.2021.10.003
You do not currently have access to this content.