Abstract

In this paper, 1/2-norm method is used to replace the traditional 1-norm to improve the compressed sensing technique. Numerical experiments and fan/compressor tests were performed to validate the applicability and robustness of the CS method based on 1/2-norm. Numerical experiments show that 1/2-norm method can effectually eliminate the spurious mode peaks generated by failed recovery of 1-norm method. Further study with random sensor failure shows the stronger robustness and applicability of 1/2-norm method. In the low-order acoustic mode detection experiment on cooling fan, 24 sensors were used to conduct mode decomposition at blade passing frequency (BPF). The recovered signal using 1/2-norm method was sparser than that using 1-norm method. In the case two sensors were randomly removed as failed sensors, the deviation between results of 1/2-norm method and original signal was also found smaller. In the condition that more sensors failed and 1-norm method did not work properly, 1/2-norm method could still detect the main mode. For further validation, the data from a high-order aerodynamic pressure mode detection experiment on axial compressor with two sensors damaged was processed through 1/2-norm method. The mode decomposition results at both BPF and the rotating instability frequency (RIF) agreed with the conclusion of the first experiment. Numerical experiments and fan/compressor tests show that using 1/2-norm can significantly improve the application and robustness of compressed sensing in mode detection.

References

1.
Bolleter
,
U.
, and
Crocker
,
M. J.
,
1972
, “
Theory and Measurement of Modal Spectra in Hard‐Walled Cylindrical Ducts
,”
J. Acoust. Soc. Am.
,
51
(
5A
), pp.
1439
1447
.10.1121/1.1912994
2.
Tian
,
J.
,
Sun
,
Z.
,
Zhang
,
X.
, and
Ouyang
,
H.
,
2021
, “
Azimuthal Mode Characteristics of Rotating Instability in Axial Compressor Using Compressed Sensing Method
,”
ASME J. Turbomach.
,
143
(
6
), p.
061004
.10.1115/1.4050109
3.
Cicon
,
D. E.
,
Sofrin
,
T. G.
, and
Mathews
,
D. C.
,
1982
, “
Investigation of Continuously Traversing Microphone System for Mode Measurement
,” NASA, Washington, DC, Report No.
PWA-5846-26
.https://ntrs.nasa.gov/citations/19830011304
4.
Hall
,
D.
,
Heidelberg
,
L.
, and
Konno
,
K.
,
1993
, “
Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake-Data Collection/Analysis Techniques
,”
AIAA
Paper No. 93-0599.10.2514/6.93-0599
5.
Tian
,
J.
,
Yao
,
D.
,
Wu
,
Y.
, and
Ouyang
,
H.
,
2018
, “
Experimental Study on Rotating Instability Mode Characteristics of Axial Compressor Tip Flow
,”
Exp. Fluids
,
59
(
4
), pp.
1
13
.10.1007/s00348-018-2517-0
6.
Candes
,
E. J.
, and
Tao
,
T.
,
2006
, “
Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
,”
IEEE Trans. Inf. Theory
,
52
(
12
), pp.
5406
5425
.10.1109/TIT.2006.885507
7.
Donoho
,
D. L.
,
2006
, “
Compressed Sensing
,”
IEEE Trans. Inf. Theory
,
52
(
4
), pp.
1289
1306
.10.1109/TIT.2006.871582
8.
Huang
,
X.
,
2013
, “
Compressive Sensing and Reconstruction in Measurements With an Aerospace Application
,”
AIAA J.
,
51
(
4
), pp.
1011
1016
.10.2514/1.J052227
9.
Yu
,
W.
, and
Huang
,
X.
,
2016
, “
Compressive Sensing Based Spinning Mode Detections by In-Duct Microphone Arrays
,”
Meas. Sci. Technol.
,
27
(
5
), p.
055901
.10.1088/0957-0233/27/5/055901
10.
Yu
,
W.
,
Ma
,
Z.
,
Lau
,
A. S. H.
, and
Huang
,
X.
,
2018
, “
Analysis and Experiment of the Compressive Sensing Approach for Duct Mode Detection
,”
AIAA J.
,
56
(
2
), pp.
648
657
.10.2514/1.J056347
11.
Chartrand
,
R.
,
2007
, “
Exact Reconstruction of Sparse Signals Via Nonconvex Minimization
,”
IEEE Signal Process. Lett.
,
14
(
10
), pp.
707
710
.10.1109/LSP.2007.898300
12.
Chartrand
,
R.
, and
Staneva
,
V.
,
2008
, “
Restricted Isometry Properties and Nonconvex Compressive Sensing
,”
Inverse Probl.
,
24
(
3
), p.
035020
.10.1088/0266-5611/24/3/035020
13.
Zong-Ben
,
X. U.
,
Hai-Liang
,
G.
,
Yao
,
W.
, and
Zhang
,
H.
,
2012
, “
Representative of L1/2 Regularization Among Lq (0 < q ≤ 1) Regularizations: An Experimental Study Based on Phase Diagram
,”
Acta Autom. Sin.
,
38
(
7
), pp.
1225
1228
.10.1016/S1874-1029(11)60293-0
14.
Ao
,
C.
,
Qiao
,
B.
,
Chen
,
L.
,
Xu
,
J.
,
Liu
,
M.
, and
Chen
,
X.
,
2022
, “
Blade Dynamic Strain Non-Intrusive Measurement Using L1/2-Norm Regularization and Transmissibility
,”
Measurement
,
190
, p.
110677
.10.1016/j.measurement.2021.110677
15.
Qiao
,
B.
,
Ao
,
C.
,
Mao
,
Z.
, and
Chen
,
X.
,
2020
, “
Non-Convex Sparse Regularization for Impact Force Identification
,”
J. Sound Vib.
,
477
, p.
115311
.10.1016/j.jsv.2020.115311
16.
Sun
,
L.
,
Wu
,
F.
,
He
,
C.
,
Zhan
,
T.
,
Liu
,
W.
, and
Zhang
,
D.
,
2022
, “
Weighted Collaborative Sparse and L1/2 Low-Rank Regularizations With Superpixel Segmentation for Hyperspectral Unmixing
,”
IEEE Geosci. Remote Sens. Lett.
,
19
, pp.
1
5
.10.1109/LGRS.2020.3019427
17.
Bai
,
B.
,
Li
,
X.
,
Zhang
,
T.
, and
Lin
,
D.
,
2020
, “
Nonconvex L1/2 Minimization Based Compressive Sensing Approach for Duct Azimuthal Mode Detection
,”
AIAA J.
,
58
(
9
), pp.
3932
3946
.10.2514/1.J059341
18.
Li, Z., Qiao, B., Wen, B., Li, Z., and Chen, X., 2022, “
L1/2-Norm Regularization for Detecting Aero-Engine Fan Acoustic Mode
,” Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (
I2MTC
),
Ottawa, ON, Canada
,
May 16–19
, pp.
1
6
.10.1109/I2MTC48687.2022.9806708
19.
Behn
,
M.
,
Kisler
,
R.
, and
Tapken
,
U.
,
2016
, “
Efficient Azimuthal Mode Analysis Using Compressed Sensing
,”
AIAA
Paper No. 2016-3038.10.2514/6.2016-3038
20.
Candes
,
E. J.
,
Wakin
,
M. B.
, and
Boyd
,
S. P.
,
2008
, “
Enhancing Sparsity by Reweighted 1 Minimization
,”
J. Fourier Anal. Appl.
,
14
(
5–6
), pp.
877
905
.10.1007/s00041-008-9045-x
21.
Candes
,
E. J.
, and
Tao
,
T.
,
2005
, “
Decoding by Linear Programming
,”
IEEE Trans. Inf. Theory
,
51
(
12
), pp.
4203
4215
.10.1109/TIT.2005.858979
22.
Candes
,
E. J.
,
Romberg
,
J. K.
, and
Tao
,
T.
,
2006
, “
Stable Signal Recovery From Incomplete and Inaccurate Measurements
,”
Commun. Pure Appl. Math.
,
59
(
8
), pp.
1207
1223
.10.1002/cpa.20124
23.
Xiao
,
Z.
,
Tian
,
J.
,
Yao
,
D.
,
Wu
,
Y.
, and
Ouyang
,
H.
,
2019
, “
Application of Compressed Sensing in Circumferential Modal Identification of Axial Compressor
,”
J. Aerosp. Power
,
34
(
1
), pp.
156
167
.
24.
Tian
,
J.
,
Sun
,
Z.
,
Chai
,
P.
, and
Ouyang
,
H.
,
2020
, “
Study on the Influence of Inlet Asymmetry on Aerodynamic Noise of Cooling Fan
,”
ASME
Paper No. GT2020-14541.10.1115/GT2020-14541
25.
Yang
,
Z.
,
Ming
,
L.
,
Wu
,
S.
,
Wu
,
Y.
,
Tian
,
J.
, and
Ouyang
,
H.
,
2022
, “
On the Mode Characteristics of Rotating Instability With Different Tip Clearances
,”
ASME
Paper No. GT2022-82072.10.1115/GT2022-82072
You do not currently have access to this content.