Abstract

The inside-out ceramic turbine (ICT), a novel microturbine rotor architecture, uses monolithic ceramic turbine blades held in compression by a rotating structural shroud instead of traditional superalloy turbine blades in order to increase its maximum turbine inlet temperature (TIT) and cycle efficiency. Previous work has shown that this microturbine architecture has potential to be viable for long-term operation in normal operating conditions. However, foreign object damage (FOD) has been a major concern for ceramic turbine rotor past development efforts, and its effects on the ICT ceramic turbine blades lifespan have not been studied thus far. An experimental approach was used to characterize the effect of the ICT configuration on ceramic turbine blade impact resistance: spherical steel impactors were fired toward silicon nitride specimens simulating blade boundary conditions for both traditional and inside-out turbine layouts. Preload levels ranging from 100 MPa to 400 MPa were applied on the inside-out layout specimens to determine its effect on impact resistance. Results indicate that the inside-out turbine configuration increases the resistance to FOD over a traditional turbine configuration. For the specific conditions of this study, the specimens resisted to over five times the impactor energy when fixed at both ends. Also, results show that applying a higher compression preload on the specimens helps to resist higher energy impacts by about 50% when far from the buckling limit.

References

1.
Rodgers
,
C.
,
2003
, “
Some Effects of Size on the Performances of Small Gas Turbines
,”
ASME
Paper No. GT2003-38027.10.1115/GT2003-38027
2.
Silvestre
,
J.
,
Silvestre
,
N.
, and
de Brito
,
J.
,
2015
, “
An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites
,”
J. Nanomater.
,
2015
, pp.
1
13
.10.1155/2015/106494
3.
Woodford
,
D. A.
,
Van Steele
,
D. R.
,
Brehm
,
J. A.
,
Timms
,
L. A.
, and
Palko
,
J. E.
,
1993
, “
Testing the Tensile Properties of Ceramic-Matrix Composites
,”
JOM
,
45
(
5
), pp.
57
63
.10.1007/BF03223222
4.
Landry
,
C.
, Dubois, P. K., Courtois, N., Charron, F., Picard, M., and Plante, J.-S.,
2016
, “
Development of an Inside-Out Ceramic Turbine
,”
ASME
Paper No. GT2016-57041.10.1115/GT2016-57041
5.
Dubois
,
P. K.
, Picard, B., Gauvin-Verville, A., Méthot, P., Landry-Blais, A., Jean, L.-P., Richard, S., Plante, J.-S., and Picard, M.,
2022
, “
100-Hour Test of an Inside-Out Ceramic Turbine Rotor at Operating Conditions
,”
ASME
Paper No. GT2022-79194.10.1115/GT2022-79194
6.
Dubois
,
P. K.
,
Landry
,
C.
,
Thibault
,
D.
,
Plante
,
J.-S.
,
Picard
,
M.
, and
Picard
,
B.
,
2022
, “
Benefits and Challenges of the Inside-Out Ceramic Turbine: An Experimental Assessment
,”
J. Propul. Power
,
38
(
2
), pp.
221
228
.10.2514/1.B38004
7.
Thibault
,
D.
, Dubois, P. K., Picard, B., Landry-Blais, A., Plante, J.-S., and Picard, M.,
2021
, “
Experimental Assessment of a Sliding-Blade Inside-Out Ceramic Turbine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051010
.10.1115/1.4049303
8.
Takehara
,
I.
,
Inobe
,
I.
,
Tatsumi
,
T.
,
Ichikawa
,
Y.
, and
Kobayashi
,
H.
,
1998
, “
Research and Development of Ceramic Gas Turbine (CGT302)
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
186
190
.10.1115/1.2818074
9.
Price
,
J. R.
,
Jimenez
,
O.
,
Faulder
,
L.
,
Edwards
,
B.
, and
Parthasarathy
,
V.
,
1999
, “
Ceramic Stationary Gas Turbine Development Program—Fifth Annual Summary
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
586
592
.10.1115/1.2818512
10.
Ritchie
,
R. O.
,
1999
, “
Thresholds for High-Cycle Fatigue in a Turbine Engine Ti–6Al–4V Alloy
,”
Int. J. Fatigue
,
21
(
7
), pp.
653
662
.10.1016/S0142-1123(99)00024-9
11.
Thompson
,
S. R.
,
Ruschau
,
J. J.
, and
Nicholas
,
T.
,
2001
, “
Influence of Residual Stresses on High Cycle Fatigue Strength of Ti–6Al–4V Subjected to Foreign Object Damage
,”
Int. J. Fatigue
,
23
, pp.
405
412
.10.1016/S0142-1123(01)00166-9
12.
Nowell
,
D.
,
2003
, “
Prediction of Fatigue Performance in Gas Turbine Blades After Foreign Object Damage
,”
Int. J. Fatigue
,
25
(
9–11
), pp.
963
969
.10.1016/S0142-1123(03)00160-9
13.
Ruschau
,
J.
,
2003
, “
High Cycle Fatigue Limit Stresses for Airfoils Subjected to Foreign Object Damage
,”
Int. J. Fatigue
,
25
(
9–11
), pp.
955
962
.10.1016/S0142-1123(03)00135-X
14.
Frankel
,
P. G.
,
Withers
,
P. J.
,
Preuss
,
M.
,
Wang
,
H.-T.
,
Tong
,
J.
, and
Rugg
,
D.
,
2012
, “
Residual Stress Fields After FOD Impact on Flat and Aerofoil-Shaped Leading Edges
,”
Mech. Mater.
,
55
, pp.
130
145
.10.1016/j.mechmat.2012.08.007
15.
Akimune
,
Y.
,
Katano
,
Y.
, and
Matoba
,
K.
,
1989
, “
Spherical-Impact Damage and Strength Degradation in Silicon Nitrides for Automobile Turbocharger Rotors
,”
J. Am. Ceram. Soc.
,
72
(
8
), pp.
1422
1428
.10.1111/j.1151-2916.1989.tb07664.x
16.
Tsuruta
,
H.
,
Masuda
,
M.
,
Soma
,
T.
, and
Matsui
,
M.
,
1990
, “
Foreign Object Damage Resistance of Silicon Nitride and Silicon Carbide
,”
J. Am. Ceram. Soc.
,
73
(
6
), pp.
1714
1718
.10.1111/j.1151-2916.1990.tb09818.x
17.
Choi
,
S. R.
,
2008
, “
Foreign Object Damage Behavior in a Silicon Nitride Ceramic by Spherical Projectiles of Steels and Brass
,”
Mater. Sci. Eng. A
,
497
(
1–2
), pp.
160
167
.10.1016/j.msea.2008.06.041
18.
Johnston
,
R. D.
,
Chipman
,
R. D.
, and
Knapp
,
W. J.
,
1953
, “
Prestressed Ceramics as a Structural Material
,”
J. Am. Ceram. Soc.
,
36
(
4
), pp.
121
126
.10.1111/j.1151-2916.1953.tb12848.x
19.
Kirchner
,
H. P.
, and
Gruver
,
R. M.
,
1978
, “
Localized Impact Damage in Stressed Al2O3 and Si3N4
,”
Mater. Sci. Eng.
,
34
(
1
), pp.
25
31
.10.1016/0025-5416(78)90005-8
20.
Bao
,
Y.
,
Su
,
S.
,
Yang
,
J.
, and
Fan
,
Q.
,
2002
, “
Prestressed Ceramics and Improvement of Impact Resistance
,”
Mater. Lett.
,
57
(
2
), pp.
518
524
.10.1016/S0167-577X(02)00822-4
21.
Bazergui
,
A.
,
Biron
,
A.
,
Bui-Quoc
,
T.
,
Laberge
,
C.
, and
McIntyre
,
G.
2002
, “
Résistance Des Matériaux
,” Presses Internationales Polytechnique, Montréal, QC, Canada.http://www.pressespolytechnique.ca/fr/resistance-des-materiaux-3e-edition
22.
Johnson
,
K. L.
,
1982
, “
One Hundred Years of Hertz Contact
,”
Proc. Inst. Mech. Eng.
,
196
(
1
), pp.
363
378
.10.1243/PIME_PROC_1982_196_039_02
23.
Bhushan
,
B.
,
2013
,
Introduction to Tribology
,
Wiley
Ltd., New York
.
24.
Bocanegra-Bernal
,
M. H.
, and
Matovic
,
B.
,
2010
, “
Mechanical Properties of Silicon Nitride-Based Ceramics and Its Use in Structural Applications at High Temperatures
,”
Mater. Sci. Eng. A
,
527
(
6
), pp.
1314
1338
.10.1016/j.msea.2009.09.064
25.
Subcommittee C28.01 on Mechanical Properties and Performance
,
2021
, “
ASTM C1161-18: Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature
,” ASTM Volume 15.01: Refractories, Activated Carbon; Advanced Ceramics,
ASTM International
,
West Conshohocken, PA
.
26.
AZO Materials
,
2021
, “
AISI 52100 Alloy Steel (UNS G52986)
,” AZO Materials, Manchester, UK, accessed Dec. 13, 2021, https://www.azom.com/article.aspx?ArticleID=6704
27.
Ceramco Inc.
,
2021
, “
Production Formulation Material Properties
,” Ceramco Inc., Center Conway, NH, accessed Dec. 13, 2021, https://www.ceramcoceramics.com/materials/properties/ceramco_materials-properties.php
28.
Choi
,
S. R.
,
2008
, “
Foreign Object Damage Phenomenon by Steel Ball Projectiles in a SiC/SiC Ceramic Matrix Composite at Ambient and Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
91
(
9
), pp.
2963
2968
.10.1111/j.1551-2916.2008.02498.x
You do not currently have access to this content.