Abstract

Nickel-base superalloys (NBSAs) are a group of materials that are used in high-temperature applications. This work primarily focuses on directionally solidified (DS) NBSAs. Directionally solidified materials are comprised of columnar grains which are parallel to the 〈001〉 direction. Crystal viscoplastic (CVP) models can simulate the effects of temperature and orientation dependence under a variety of loading conditions such as tensile, low cycle fatigue (LCF), and thermomechanical fatigue (TMF). The CVP model is initially developed for a single crystal (SX) material and then adapted to DS material to represent the columnar grain structure. In past studies, the development of CVP models for DS materials was mainly accomplished by applying the SX CVP model to the DS materials implicitly or explicitly. Both of these modeling approaches require the application of the SX CVP model to multiple grains resulting in them being highly computationally expensive. A crystal viscoplastic model for DS materials that circumvents the modeling of individual grains was presented by the authors at turbo-expo 2021. The primary objective of this work is to utilize the three types of DS-CVP models for the same materials to investigate their performance. Comparisons will be performed at various temperatures and orientations. The models are compared to analyze their pros and cons and applicability, etc. Comparisons of these three types of modeling approaches applied to the same material have not been presented before in the literature and will provide an excellent insight into the usability of these constitutive models.

References

1.
Kirka
,
M.
,
2014
, “Thermomechanical Behavior of a Directionally Solidified Nickel-Base Superalloys in the Aged State,”
Doctoral dissertation
, Georgia Institute of Technology, Atlanta, GA.http://hdl.handle.net/1853/53458
2.
Shenoy
,
M. M.
,
Gordon
,
A. P.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
,
2005
, “
Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy
,”
ASME J. Eng. Mater. Technol.
,
127
(
3
), pp.
325
336
.10.1115/1.1924560
3.
Chu
,
Z.
,
Yu
,
J.
,
Sun
,
X.
,
Guan
,
H.
, and
Hu
,
Z.
,
2010
, “
Tensile Property and Deformation Behavior of a Directionally Solidified Ni-Base Superalloy
,”
Mater. Sci. Eng. A
,
527
(
12
), pp.
3010
3014
.10.1016/j.msea.2010.01.051
4.
Wijeyeratne
,
N.
,
Irmak
,
F.
, and
Gordon
,
A. P.
,
2021
, “
Crystal Visco-Plastic Model for Directionally Solidified Ni-Base Superalloys Under Monotonic and Low Cycle Fatigue
,”
ASME
Paper No. GT2021-59581.10.1115/GT2021-59581
5.
Wijeyeratne
,
N.
,
Irmak
,
F.
, and
Gordon
,
A. P.
,
2020
, “
Predicting Responses of a Single Crystal Ni-Base Superalloy Under a Wide Range of Monotonic and Cyclic Conditions
,”
AIAA
Paper No. 2020-2107.10.2514/6.2020-2107
6.
Wijeyeratne
,
N.
,
Irmark
,
F.
,
Gordon
,
A. P.
, and
Jeon
,
J. Y.
,
2020
, “
Crystal Visco-Plastic Model for Ni-Base Superalloys Under Thermo-Mechanical Fatigue
,”
ASME
Paper No. GT2020-14163.10.1115/GT2020-14163
7.
Wijeyeratne
,
N.
,
Irmak
,
F.
,
Geiger
,
G.
,
Jeon
,
J. Y.
, and
Gordon
,
A.
,
2019
, “
A Crystal Visco-Plastic Model for Ni-Base Superalloys Under Low Cycle Fatigue
,”
ASME
Paper No. GT2019-91903.10.1115/GT2019-91903
8.
Wijeyeratne
,
N.
,
Irmak
,
F.
,
O'nora
,
N.
, and
Gordon
,
A. P.
,
2022
, “
A Comparative Study of Constitutive Modeling of an Aero-Engine Single Crystal Superalloy Under Creep-Thermomechanical Fatigue
,”
AIAA
Paper No. 2022-0629.10.2514/6.2022-0629
9.
Haq
,
A.
, and
Xiaoguang
,
Y.
,
2018
, “
Isothermal Tensile, Cyclic Behaviour and Constitutive Modelling of Nickel-Based Directionally Solidified Superalloy
,” 15th International Bhurban Conference on Applied Sciences and Technology (
IBCAST
), Islamabad, Pakistan, Jan. 9–13, pp.
150
157
.10.1109/IBCAST.2018.8312215
10.
Beck
,
T.
,
Lang
,
K. H.
,
Pitz
,
G.
, and
Löhe
,
D.
,
2002
, “
The Influence of Superimposed Creep Loadings on the Thermal-Mechanical Fatigue Behaviour of the Ni-Base Superalloy in 792 CC
,”
Mech. Time-Depend. Mater.
,
6
(
3
), pp.
271
282
.10.1023/A:1016294404179
11.
Bouchenot
,
T.
,
Gordon
,
A. P.
,
Shinde
,
S.
, and
Gravett
,
P.
,
2014
, “
An Analytical Stress-Strain Hysteresis Model for a Directionally-Solidified Superalloy Under Thermomechanical Fatigue
,”
ASME
Paper No. GT2014-27329.10.1115/GT2014-27329
12.
Dong
,
C.
,
Yang
,
X.
,
Shi
,
D.
, and
Yu
,
H.
,
2014
, “
Modeling of Anisotropic Tensile and Cyclic Viscoplastic Behavior of a Nickel-Base Directionally Solidified Superalloy
,”
Mater. Des.
,
55
, pp.
966
978
.10.1016/j.matdes.2013.10.085
13.
Blaine
,
G.
,
Hugo
,
L.
, and
Xiao
,
H.
,
2010
, “
Superalloys, Alloying and Performance
,”
Materials Park
,
ASM International
,
Novelty, OH
.
14.
Pollock
,
T. M.
, and
Tin
,
S.
,
2006
, “
Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties
,”
J. Propul. Power
,
22
(
2
), pp.
361
374
.10.2514/1.18239
15.
Cuitiño
,
A. M.
, and
Ortiz
,
M.
,
1993
, “
Computational Modelling of Single Crystals
,”
Modell. Simul. Mater. Sci. Eng.
,
1
(
3
), pp.
225
263
.10.1088/0965-0393/1/3/001
16.
McGinty
,
R.
,
2001
, “Multiscale Representation of Polycrystalline Inelasticity,”
Doctoral dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.https://www.proquest.com/openview/ea704b50cba506f1b34e9222ee2b9d80/1?pqorigsite=gscholar&cbl=18750&diss=y
17.
Frederick
,
C. O.
, and
Armstrong
,
P. J.
,
2007
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Mater. High Temp.
,
24
(
1
), pp.
1
26
.10.3184/096034007X207589
18.
Sachs
,
G.
,
1928
, “
Plasticity Problems in Metals
,”
Trans. Faraday Soc.
,
24
, pp.
84
92
.10.1039/tf9282400084
19.
Taylor
,
G. I.
,
1938
, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
, pp.
307
324
.
20.
Asaro
,
R. J.
, and
Needleman
,
A.
,
1985
, “
Overview No. 42 Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
,
33
(
6
), pp.
923
953
.10.1016/0001-6160(85)90188-9
21.
Nemat-Nasser
,
S.
,
Mehrabadi
,
M.
, and
Iwakuma
,
T.
,
1980
,
On Certain Macroscopic and Microscopic Aspects of Plastic Flow of Ductile Materials
,
Northwestern University
,
Evanston, IL
.
22.
Paidar
,
V.
,
Pope
,
D. P.
, and
Vitek
,
V.
,
1984
, “
A Theory of the Anomalous Yield Behavior in L12 Ordered Alloys
,”
Acta Metall.
,
32
(
3
), pp.
435
448
.10.1016/0001-6160(84)90117-2
You do not currently have access to this content.