Abstract

New laminar flame speed and burned-gas Markstein length data for H2–CO–O2–CO2–He mixtures have been measured from spherically expanding flames. Experiments were conducted at 10 atm and room temperature for H2:CO ratios ranging from 2:1 to 1:4 and for overall CO2 mole fractions from 0% to 30%. CO2 dilution had little effect on Markstein length, but CO2 dilutions of 10%, 20%, and 30% caused average reductions in flame speed of 47%, 73%, and 89%, respectively, regardless of H2:CO ratio. The study was designed to isolate the dilution effect of CO2 on flame speed, and a detailed analysis using the FCO2 method was used to show that the chemical-kinetic participation of CO2 was responsible for up to 20% of the reduction in flame speed. Hence, the majority (80% or more) of the reduction in flame speed due to CO2 is from the thermal effect. Accurate flame speed predictions were produced by five different chemical kinetics mechanisms for most conditions, with the slight exception of high-CO, high-CO2 mixtures. A thorough sensitivity analysis highlighted the larger effect of CO2 dilution on the important kinetics reactions than the effect of changing H2:CO. Sensitivity analysis also showed that the chain branching reaction H2O + O ⇌ OH + OH could be modified (albeit beyond its uncertainty) to achieve more accurate flame speed predictions, but also indicated that further improvement of flame speed modeling would require changes to many lesser reactions.

References

1.
Moliere
,
M.
, “
Benefiting From the Wide Fuel Capability of Gas Turbines: A Review of Application Opportunities
,”
ASME
Paper No. GT2002-30017.10.1115/GT2002-30017
2.
Richards
,
G. A.
, and,
Kent
,
H. C.
,
2009
, “
Gasification Technology to Produce Synthesis Gas
,”
Synthesis Gas Combustion: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
, pp.
1
28
.
3.
Chacartegui
,
R.
,
Torres
,
M.
,
Sánchez
,
D.
,
Jiménez
,
F.
,
Muñoz
,
A.
, and
Sánchez
,
T.
,
2011
, “
Analysis of Main Gaseous Emissions of Heavy Duty Gas Turbines Burning Several Syngas Fuels
,”
Fuel Process. Technol.
,
92
(
2
), pp.
213
220
.10.1016/j.fuproc.2010.03.014
4.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
,
2001
, “
Issues for Low-Emission, Fuel-Flexible Power Systems
,”
Prog. Energy Combust. Sci.
,
27
(
2
), pp.
141
169
.10.1016/S0360-1285(00)00019-8
5.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.10.1016/j.combustflame.2017.03.019
6.
Janus
,
M. C.
,
Richards
,
G. A.
,
Yip
,
M. J.
, and
Robey
,
E. H.
,
1997
, “
Effects of Ambient Conditions and Fuel Composition on Combustion Stability
,”
ASME
Paper No. 97-GT-266.10.1115/97-GT-266
7.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
8.
Dennis
,
R. A.
,
Shelton
,
W. W.
, and
Le
,
P.
, “
Development of Baseline Performance Values for Turbines in Existing IGCC Applications
,”
ASME
Paper No. GT2007-28096.10.1115/GT2007-28096
9.
Chiesa
,
P.
, and
Consonni
,
S.
,
1999
, “
Shift Reactors and Physical Absorption for Low-CO2 Emission IGCCs
,”
ASME J. Eng. Gas Turbines Power
,
121
(
2
), pp.
295
305
.10.1115/1.2817120
10.
Wall
,
T. F.
,
2007
, “
Combustion Processes for Carbon Capture
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
31
47
.10.1016/j.proci.2006.08.123
11.
Kanniche
,
M.
, and
Bouallou
,
C.
,
2007
, “
CO2 Capture Study in Advanced Integrated Gasification Combined Cycle
,”
Appl. Therm. Eng.
,
27
(
16
), pp.
2693
2702
.10.1016/j.applthermaleng.2007.04.007
12.
Payne
,
R.
,
Chen
,
S. L.
,
Wolsky
,
A. M.
, and
Richter
,
W. F.
,
1989
, “
CO2 Recovery Via Coal Combustion in Mixtures of Oxygen and Recycled Flue Gas
,”
Combust. Sci. Technol.
,
67
(
1–3
), pp.
1
16
.10.1080/00102208908924058
13.
Ravi
,
S.
, and
Petersen
,
E. L.
,
2012
, “
Laminar Flame Speed Correlations for Pure-Hydrogen and High-Hydrogen Content Syngas Blends With Various Diluents
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19177
19189
.10.1016/j.ijhydene.2012.09.086
14.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Procedia
,
114
(
1
), pp.
5948
5966
.10.1016/j.egypro.2017.03.1731
15.
Liu
,
F.
,
Guo
,
H.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
,
2001
, “
The Chemical Effects of Carbon Dioxide as an Additive in an Ethylene Diffusion Flame: Implications for Soot and NOx Formation
,”
Combust. Flame
,
125
(
1–2
), pp.
778
787
.10.1016/S0010-2180(00)00241-8
16.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.10.1016/S0010-2180(03)00019-1
17.
Masri
,
A. R.
,
Dibble
,
R. W.
, and
Barlow
,
R. S.
,
1992
, “
Chemical Kinetic Effects in Nonpremixed Flames of H2/CO2 Fuel
,”
Combust. Flame
,
91
(
3–4
), pp.
285
309
.10.1016/0010-2180(92)90059-X
18.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. C.
,
Petersen
,
E. L.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.10.1016/j.combustflame.2013.01.001
19.
Mathieu
,
O.
,
Kopp
,
M. M.
, and
Petersen
,
E. L.
,
2013
, “
Shock-Tube Study of the Ignition of Multi-Component Syngas Mixtures With and Without Ammonia Impurities
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3211
3218
.10.1016/j.proci.2012.05.008
20.
Kalitan
,
D. M.
,
Mertens
,
J. D.
,
Crofton
,
M. W.
, and
Petersen
,
E. L.
,
2007
, “
Ignition and Oxidation of Lean CO/H2 Fuel Blends in Air
,”
J. Propul. Power
,
23
(
6
), pp.
1291
1301
.10.2514/1.28123
21.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Barrett
,
A. B.
,
Reehal
,
S. C.
,
Mertens
,
J. D.
,
Beerer
,
D. J.
,
Hack
,
R. L.
, and
McDonell
,
V. G.
,
2007
, “
New Syngas/Air Ignition Data at Lower Temperature and Elevated Pressure and Comparison to Current Kinetics Models
,”
Combust. Flame
,
149
(
1–2
), pp.
244
247
.10.1016/j.combustflame.2006.12.007
22.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kérmonès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H. J.
,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021503
.10.1115/1.4007737
23.
Hargis
,
J. W.
, and
Petersen
,
E. L.
,
2015
, “
Methane Ignition in a Shock Tube With High Levels of CO2 Dilution: Consideration of the Reflected-Shock Bifurcation
,”
Energy Fuels
,
29
(
11
), pp.
7712
7726
.10.1021/acs.energyfuels.5b01760
24.
Hargis
,
J. W.
, and
Petersen
,
E. L.
,
2017
, “
Shock-Tube Boundary-Layer Effects on Reflected-Shock Conditions With and Without CO2
,”
AIAA J.
,
55
(
3
), pp.
902
912
.10.2514/1.J055253
25.
Karimi
,
M.
,
Ochs
,
B.
,
Sun
,
W.
, and
Ranjan
,
D.
,
2021
, “
High Pressure Ignition Delay Times of H2/CO Mixture in Carbon Dioxide and Argon Diluent
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
251
260
.10.1016/j.proci.2020.06.268
26.
Barak
,
S.
,
Ninnemann
,
E.
,
Neupane
,
S.
,
Barnes
,
F.
,
Kapat
,
J.
, and
Vasu
,
S.
,
2019
, “
High-Pressure Oxy-Syngas Ignition Delay Times With CO2 Dilution: Shock Tube Measurements and Comparison of the Performance of Kinetic Mechanisms
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021011
.10.1115/1.4040904
27.
Barak
,
S.
,
Pryor
,
O.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Vasu
,
S.
, and
Koroglu
,
B.
,
2017
, “
High-Speed Imaging and Measurements of Ignition Delay Times in Oxy-Syngas Mixtures With High CO2 Dilution in a Shock Tube
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121503
.10.1115/1.4037458
28.
Barak
,
S.
,
Pryor
,
O.
,
Ninnemann
,
E.
,
Neupane
,
S.
,
Vasu
,
S.
,
Lu
,
X.
, and
Forrest
,
B.
,
2020
, “
Ignition Delay Times of Oxy-Syngas and Oxy-Methane in Supercritical CO2 Mixtures for Direct-Fired Cycles
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021014
.10.1115/1.4045743
29.
Shao
,
J.
,
Choudhary
,
R.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Barak
,
S.
, and
Vasu
,
S.
,
2019
, “
Ignition Delay Times of Methane and Hydrogen Highly Diluted in Carbon Dioxide at High Pressures Up to 300 Atm
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4555
4562
.10.1016/j.proci.2018.08.002
30.
Duva
,
B. C.
,
Chance
,
L. E.
, and
Toulson
,
E.
,
2020
, “
Effect of CO2 Dilution on the Laminar Burning Velocities of Premixed Methane/Air Flames at Elevated Temperature
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031014
.10.1115/1.4044641
31.
Halter
,
F.
,
Foucher
,
F.
,
Landry
,
L.
, and
Mounaïm-Rousselle
,
C.
,
2009
, “
Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames
,”
Combust. Sci. Technol.
,
181
(
6
), pp.
813
827
.10.1080/00102200902864662
32.
Duva
,
B. C.
,
Chance
,
L. E.
, and
Toulson
,
E.
,
2020
, “
Experimental and Numerical Investigation of the CO2 Dilution Effect on Laminar Burning Velocities and Burned Gas Markstein Lengths of High/Low RON Gasolines and Isooctane Flames at Elevated Temperatures
,”
Energy Fuels
,
34
(
1
), pp.
996
1004
.10.1021/acs.energyfuels.9b03854
33.
Turner
,
M. A.
,
Paschal
,
T. T.
,
Kulatilaka
,
W. D.
, and
Petersen
,
E. L.
,
2019
, “
An Investigation of Laminar Flame Speed of CH4-O2-CO2 Mixtures
,”
ASME
Paper No. GT2019-91392.10.1115/GT2019-91392
34.
Turner
,
M. A.
,
Kulatilaka
,
W. D.
, and
Petersen
,
E. L.
,
2020
, “
Laminar Flame Speeds of Oxy-Methane Flames With CO2 Dilution at Elevated Pressures
,”
ASME
Paper No. GT2020-14441.10.1115/GT2020-14441
35.
Lee
,
C. E.
,
Lee
,
S. R.
,
Han
,
J. W.
, and
Park
,
J.
,
2001
, “
Numerical Study on Effect of CO2 Addition in Flame Structure and NOx Formation of CH4-Air Counterflow Diffusion Flames
,”
Int. J. Energy Res.
,
25
(
4
), pp.
343
354
.10.1002/er.686
36.
Xie
,
M.
,
Fu
,
J.
,
Zhang
,
Y.
,
Shu
,
J.
,
Ma
,
Y.
,
Liu
,
J.
, and
Zeng
,
D.
,
2020
, “
Numerical Analysis on the Effects of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flame With Elevated Initial Temperature and Pressure
,”
Fuel
,
264
, p.
116858
.10.1016/j.fuel.2019.116858
37.
Qiao
,
L.
,
Gan
,
Y.
,
Nishiie
,
T.
,
Dahm
,
W. J. A.
, and
Oran
,
E. S.
,
2010
, “
Extinction of Premixed Methane/Air Flames in Microgravity by Diluents: Effects of Radiation and Lewis Number
,”
Combust. Flame
,
157
(
8
), pp.
1446
1455
.10.1016/j.combustflame.2010.04.004
38.
Zhang
,
W.
,
Chen
,
Z.
, and
Kong
,
W.
,
2012
, “
Effects of Diluents on the Ignition of Premixed H2/Air Mixtures
,”
Combust. Flame
,
159
(
1
), pp.
151
160
.10.1016/j.combustflame.2011.05.017
39.
Han
,
M.
,
Ai
,
Y.
,
Chen
,
Z.
, and
Kong
,
W.
,
2015
, “
Laminar Flame Speeds of H2/CO With CO2 Dilution at Normal and Elevated Pressures and Temperatures
,”
Fuel
,
148
, pp.
32
38
.10.1016/j.fuel.2015.01.083
40.
Wang
,
J.
,
Huang
,
Z.
,
Kobayashi
,
H.
, and
Ogami
,
Y.
,
2012
, “
Laminar Burning Velocities and Flame Characteristics of CO–H2–CO2–O2 Mixtures
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19158
19167
.10.1016/j.ijhydene.2012.07.103
41.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
, Jr
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinetics
,
39
(
3
), pp.
109
136
.10.1002/kin.20218
42.
Sun
,
H.
,
Yang
,
S. I.
,
Jomaas
,
G.
, and
Law
,
C. K.
,
2007
, “
High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
439
446
.10.1016/j.proci.2006.07.193
43.
Joshi
,
A. V.
, and
Wang
,
H.
,
2006
, “
Master Equation Modeling of Wide Range Temperature and Pressure Dependence of CO + OH → Products
,”
Int. J. Chem. Kinetics
,
38
(
1
), pp.
57
73
.10.1002/kin.20137
44.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
,
2012
, “
Effects of Dilution With Carbon Dioxide on the Laminar Burning Velocity and Flame Stability of H2–CO Mixtures at Atmospheric Condition
,”
Combust. Flame
,
159
(
2
), pp.
482
492
.10.1016/j.combustflame.2011.08.006
45.
Natarajan
,
J.
,
Kochar
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2009
, “
Pressure and Preheat Dependence of Laminar Flame Speeds of H2/CO/CO2/O2/He Mixtures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1261
1268
.10.1016/j.proci.2008.06.110
46.
Ai
,
Y.
,
Zhou
,
Z.
,
Chen
,
Z.
, and
Kong
,
W.
,
2014
, “
Laminar Flame Speed and Markstein Length of Syngas at Normal and Elevated Pressures and Temperatures
,”
Fuel
,
137
, pp.
339
345
.10.1016/j.fuel.2014.08.004
47.
Vu
,
T. M.
,
Park
,
J.
,
Kwon
,
O. B.
,
Bae
,
D. S.
,
Yun
,
J. H.
, and
Keel
,
S. I.
,
2010
, “
Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas–Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3868
3880
.10.1016/j.ijhydene.2010.01.091
48.
Burke
,
M. P.
,
Qin
,
X.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2007
, “
Measurements of Hydrogen Syngas Flame Speeds at Elevated Pressures
,”
Proceedings of the 5th US Combustion Meeting
, San Diego, CA, Mar. 25–28, pp.
1
14
.http://www.princeton.edu/~combust/meetings/JSSCI%20UCSD/Burke_et_al_5th_JMUSSCI_paper_A16.pdf
49.
Egolfopoulos
,
F. N.
,
Hansen
,
N.
,
Ju
,
Y.
,
Kohse-Höinghaus
,
K.
,
Law
,
C. K.
, and
Qi
,
F.
,
2014
, “
Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
43
, pp.
36
67
.10.1016/j.pecs.2014.04.004
50.
Morones
,
A.
,
Turner
,
M. A.
,
Leon
,
V. J.
,
Ruehle
,
K.
, and
Petersen
,
E. L.
,
2019
, “
Validation of a New Turbulent Flame Speed Facility for the Study of Gas Turbine Fuel Blends at Elevated Pressure
,”
ASME
Paper No. GT2019-90394.10.1115/GT2019-90394
51.
Rozenchan
,
G.
,
Zhu
,
D. L.
,
Law
,
C. K.
, and
Tse
,
S. D.
,
2002
, “
Outward Propagation, Burning Velocities, and Chemical Effects of Methane Flames Up to 60 Atm
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1461
1470
.10.1016/S1540-7489(02)80179-1
52.
Tse
,
S. D.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2000
, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures Up to 60 Atmospheres
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1793
1800
.10.1016/S0082-0784(00)80581-0
53.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2014
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons
, Hoboken, NJ.
54.
Sikes
,
T.
,
Mannan
,
M. S.
, and
Petersen
,
E. L.
,
2018
, “
An Experimental Study: Laminar Flame Speed Sensitivity From Spherical Flames in Stoichiometric CH4–Air Mixtures
,”
Combust. Sci. Technol.
,
190
(
9
), pp.
1594
1613
.10.1080/00102202.2018.1460365
55.
Lowry
,
W.
,
de Vries
,
J.
,
Krejci
,
M.
,
Petersen
,
E.
,
Serinyel
,
Z.
,
Metcalfe
,
W.
,
Curran
,
H.
, and
Bourque
,
G.
,
2011
, “
Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
) p.
091501
.10.1115/1.4002809
56.
Natarajan
,
J.
,
Lieuwen
,
T. C.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
.10.1016/j.combustflame.2007.05.003
57.
Chen
,
Z.
,
2011
, “
On the Extraction of Laminar Flame Speed and Markstein Length From Outwardly Propagating Spherical Flames
,”
Combust. Flame
,
158
(
2
), pp.
291
300
.10.1016/j.combustflame.2010.09.001
58.
Markstein
,
G. H.
,
1951
, “
Experimental and Theoretical Studies of Flame-Front Stability
,”
J. Aeronaut. Sci.
,
18
(
3
), pp.
199
209
.10.2514/8.1900
59.
Frankel
,
M. L.
, and
Sivashinsky
,
G. I.
,
1983
, “
On Effects Due to Thermal Expansion and Lewis Number in Spherical Flame Propagation
,”
Combust. Sci. Technol.
,
31
(
3–4
), pp.
131
138
.10.1080/00102208308923635
60.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II: High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” University of Southern California, Los Angeles, CA, accessed Oct. 10, 2022, ignis.usc.edu/USC_Mech_II.htm
61.
Williams, F. A., Seshadri, K., and Catollica, R., 2016, “Chemical-Kinetic Mechanism for Combustion Applications,” University of California, San Diego, CA, accessed Oct. 10, 2022, http://web.eng.ucsd.edu/mae/groups/combustion/index.html
62.
Smith
,
G. P.
,
Golde
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
Lissianski
,
V. V.
, and
Qin
,
Z.
,
1999
, “
GRI-Mech 3.0
,” University of California, Berkeley, CA, accessed Oct. 10, 2022, http://combustion.berkeley.edu/gri-mech
63.
Kee
,
R. J.
, Rupley, F. M., and
Miller
,
J. A.
,
1989
, “
Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,” Sandia National Laboratories, Report No.
SAND89-8009
, pp.
1
126
.10.2172/5681118
64.
Hu
,
E.
,
Jiang
,
X.
,
Huang
,
Z.
, and
Iida
,
N.
,
2012
, “
Numerical Study on the Effects of Diluents on the Laminar Burning Velocity of Methane–Air Mixtures
,”
Energy Fuels
,
26
(
7
), pp.
4242
4252
.10.1021/ef300535s
65.
Das
,
A. K.
,
Kumar
,
K.
, and
Sung
,
C.-J.
,
2011
, “
Laminar Flame Speeds of Moist Syngas Mixtures
,”
Combust. Flame
,
158
(
2
), pp.
345
353
.10.1016/j.combustflame.2010.09.004
66.
Osorio
,
C. H.
,
Vissotski
,
A. J.
,
Petersen
,
E. L.
, and
Mannan
,
M. S.
,
2013
, “
Effect of CF3Br on C1–C3 Ignition and Laminar Flame Speed: Numerical and Experimental Evaluation
,”
Combust. Flame
,
160
(
6
), pp.
1044
1059
.10.1016/j.combustflame.2013.01.025
67.
Sutherland
,
J. W.
,
Patterson
,
P. M.
, and
Klemm
,
R. B.
,
1991
, “
Rate Constants for the Reaction O(3P)+H2O⇌OH+OH, Over the Temperature Range 1053 K to 2033 K Using Two Direct Techniques
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
51
57
.10.1016/S0082-0784(06)80241-9
68.
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2014
, “
Recent Advances in Understanding of Flammability Characteristics of Hydrogen
,”
Prog. Energy Combust. Sci.
,
41
, pp.
1
55
.10.1016/j.pecs.2013.10.002
69.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Just
,
T.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Stocker
,
D.
,
Troe
,
J.
,
Tsang
,
W.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
2005
, “
Evaluated Kinetic Data for Combustion Modeling: Supplement II
,”
J. Phys. Chem. Ref. Data
,
34
(
3
), pp.
757
1397
.10.1063/1.1748524
You do not currently have access to this content.