Abstract

Vibration control in supercritical rotors is a challenging task due to the underlying complex dynamics that high-speed machinery undergoes. When taking into account both structural (e.g., structural integrity and material properties) and operational (e.g., rotational speed variation and environmental effects) uncertainties that can plague such systems, the task of designing and implementing a robust and reliable control system becomes increasingly daunting. In this contribution, a Kriging modeling approach is used to derive a representative surrogate-based controller applied to a flexible rotor supported by active magnetic bearings. The surrogate controller is formulated by considering the relationship between the shaft position and actuator current. This means that after proper training, the surrogate control takes the rotor position (proximity sensor readings) as input, and the output corresponds to the current levels for the actuators to control the system vibration amplitudes. Experimental tests considering a test rig composed of a flexible rotor supported by two active magnetic bearings were used to validate the proposed approach for different operational scenarios, namely, steady-state, run-up, and transient-state. In this case, the surrogate model was trained considering the shaft positions and the corresponding control currents measured with the rotor operating close to its first bending critical speed. The obtained results illustrate how the Kriging-based surrogate controller can reliably maintain acceptable vibration levels, even when exposed to unexpected constant rotation speeds and other operating conditions not manifested in previous sample sets.

References

1.
Arias-Montiel
,
M.
,
Silva-Navarro
,
G.
, and
Antonio-García
,
A.
,
2014
, “
Active Vibration Control in a Rotor System by an Active Suspension With Linear Actuators
,”
J. Appl. Res. Technol.
,
12
, pp.
898
907
.10.1016/S1665-6423(14)70596-6
2.
Brusa
,
E.
,
2014
, “
Semi-Active and Active Magnetic Stabilization of Supercritical Rotor Dynamics by Contra-Rotating Damping
,”
Mechatronics
,
24
, pp.
500
510
.10.1016/j.mechatronics.2014.06.001
3.
Kuppa
,
S. K.
, and
Lal
,
M.
,
2020
, “
Dynamic Behaviour Analysis of Coupled Rotor Active Magnetic Bearing System in the Supercritical Frequency Range
,”
Mech. Mach. Theory
,
152
, p.
103915
.10.1016/j.mechmachtheory.2020.103915
4.
Zaccardo
,
V. M.
, and
Buckner
,
G. D.
,
2021
, “
Active Magnetic Dampers for Controlling Lateral Rotor Vibration in High-Speed Rotating Shafts
,”
Mech. Syst. Signal Process.
,
152
, p.
107445
.10.1016/j.ymssp.2020.107445
5.
Knospe
,
C. R.
,
2007
, “
Active Magnetic Bearings for Machining Applications
,”
Control Eng. Pract.
,
15
, pp.
307
313
.10.1016/j.conengprac.2005.12.002
6.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
, “
Magnetic Bearings. Theory, Design, and Application to Rotating Machinery
,” Springer-Verlag, Berlin.10.1007/978-3-642-00497-1
7.
Srinivas
,
R. S.
,
Tiwari
,
R.
, and
Kannababu
,
C.
,
2018
, “
Application of Active Magnetic Bearings in Flexible Rotordynamic Systems–A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
106
, pp.
537
572
.10.1016/j.ymssp.2018.01.010
8.
Xu
,
Y.
,
Zhou
,
J.
,
Di
,
L.
, and
Zhao
,
C.
,
2017
, “
Active Magnetic Bearings Dynamic Parameters Identification From Experimental Rotor Unbalance Response
,”
Mech. Syst. Signal Process.
,
83
, pp.
228
240
.10.1016/j.ymssp.2016.06.009
9.
Lyu
,
M.
,
Liu
,
T.
,
Wang
,
Z.
,
Yan
,
S.
,
Jia
,
X.
, and
Wang
,
Y.
,
2018
, “
A Control Method of the Rotor Re-Levitation for Different Orbit Responses During Touchdowns in Active Magnetic Bearings
,”
Mech. Syst. Signal Process.
,
105
, pp.
241
260
.10.1016/j.ymssp.2017.12.002
10.
Yao
,
X.
,
Chen
,
Z.
, and
Jiao
,
Y.
,
2019
, “
A Dual-Loop Control Approach of Active Magnetic Bearing System for Rotor Tracking Control
,”
IEEE Access
,
7
, pp.
121760
121768
.10.1109/ACCESS.2019.2937191
11.
de Queiroz
,
M. S.
, and
Dawson
,
D. M.
,
1996
, “
Nonlinear Control of Active Magnetic Bearings: A Backstepping Approach
,”
IEEE Trans. Control Syst. Technol.
,
4
, pp.
545
552
.10.1109/87.531920
12.
Fittro
,
R.
, and
Knospe
,
C.
,
2002
, “
The μ Approach to Control of Active Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
566
570
.10.1115/1.1417484
13.
Tsiotras
,
P.
, and
Wilson
,
B. C.
,
2003
, “
Zero-and Low-Bias Control Designs for Active Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
11
, pp.
889
904
.10.1109/TCST.2003.819593
14.
Lei
,
S.
, and
Palazzolo
,
A.
,
2008
, “
Control of Flexible Rotor Systems With Active Magnetic Bearings
,”
J. Sound Vib.
,
314
, pp.
19
38
.10.1016/j.jsv.2007.12.028
15.
Schuhmann
,
T.
,
Hofmann
,
W.
, and
Werner
,
R.
,
2011
, “
Improving Operational Performance of Active Magnetic Bearings Using Kalman Filter and State Feedback Control
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
821
829
.10.1109/TIE.2011.2161056
16.
Dong
,
L.
, and
You
,
S.
,
2014
, “
Adaptive Control of an Active Magnetic Bearing With External Disturbance
,”
ISA Trans.
,
53
, pp.
1410
1419
.10.1016/j.isatra.2013.12.028
17.
Kiani
,
M.
,
Salarieh
,
H.
,
Alasty
,
A.
, and
Darbandi
,
S. M.
,
2016
, “
Hybrid Control of a Three-Pole Active Magnetic Bearing
,”
Mechatronics
,
39
, pp.
28
41
.10.1016/j.mechatronics.2016.07.004
18.
Roy
,
H.
,
Das
,
A.
, and
Dutt
,
J.
,
2016
, “
An Efficient Rotor Suspension With Active Magnetic Bearings Having Viscoelastic Control Law
,”
Mech. Mach. Theory
,
98
, pp.
48
63
.10.1016/j.mechmachtheory.2015.11.012
19.
Ran
,
S.
,
Hu
,
Y.
, and
Wu
,
H.
,
2018
, “
Design, Modeling, and Robust Control of the Flexible Rotor to Pass the First Bending Critical Speed With Active Magnetic Bearing
,”
Adv. Mech. Eng.
,
10
(2).10.1177/1687814018757536
20.
Shata
,
A. M. A.-H.
,
Hamdy
,
R. A.
,
Abdelkhalik
,
A. S.
, and
El-Arabawy
,
I.
,
2018
, “
A Fractional Order PID Control Strategy in Active Magnetic Bearing Systems
,”
Alexandria Eng. J.
,
57
, pp.
3985
3993
.10.1016/j.aej.2018.01.020
21.
Hladowski
,
L.
,
Mystkowski
,
A.
,
Galkowski
,
K.
,
Rogers
,
E.
, and
Chu
,
B.
,
2020
, “
Application of the Dynamic Iterative Learning Control to the Heteroplanar Active Magnetic Bearing
,”
IFAC-PapersOnLine
,
53
, pp.
1511
1516
.10.1016/j.ifacol.2020.12.2009
22.
Nevaranta
,
N.
,
Jaatinen
,
P.
,
Vuojolainen
,
J.
,
Sillanpää
,
T.
, and
Pyrhönen
,
O.
,
2020
, “
Adaptive Mimo Pole Placement Control for Commissioning of a Rotor System With Active Magnetic Bearings
,”
Mechatronics
,
65
, p.
102313
.10.1016/j.mechatronics.2019.102313
23.
Carmo Carvalho
,
F.
,
Fernandes de Oliveira
,
M. V.
,
Lara-Molina
,
F. A.
,
Cavalini
,
A. A.
, Jr.
, and
Steffen
,
V.
, Jr.
,
2021
, “
Fuzzy Robust Control Applied to Rotor Supported by Active Magnetic Bearing
,”
J. Vib. Control
,
27
, pp.
912
923
.10.1177/1077546320933734
24.
Peitz
,
S.
, and
Dellnitz
,
M.
,
2018
, “
A Survey of Recent Trends in Multiobjective Optimal Control–Surrogate Models, Feedback Control and Objective Reduction
,”
Math. Comput. Appl.
,
23
(
2
), p.
30
.10.3390/mca23020030
25.
Pan
,
I.
, and
Das
,
S.
,
2015
, “
Kriging Based Surrogate Modeling for Fractional Order Control of Microgrids
,”
IEEE Trans. Smart Grid
,
6
, pp.
36
44
.10.1109/TSG.2014.2336771
26.
Micheli
,
L.
,
Hong
,
J.
,
Laflamme
,
S.
, and
Alipour
,
A.
,
2020
, “
Surrogate Models for High Performance Control Systems in Wind-Excited Tall Buildings
,”
Appl. Soft Comput.
,
90
, p.
106133
.10.1016/j.asoc.2020.106133
27.
Zhou
,
Y.
, and
Lu
,
Z.
,
2020
, “
An Enhanced Kriging Surrogate Modeling Technique for High-Dimensional Problems
,”
Mech. Syst. Signal Process.
,
140
, p.
106687
.10.1016/j.ymssp.2020.106687
28.
Silva Barbosa
,
J.
,
Campanine Sicchieri
,
L.
,
Dourado
,
A. D. P.
,
Cavalini
,
A. A.
, Jr.
, and
Steffen
,
V.
, Jr.
,
2021
, “
Kriging Approach Dedicated to Represent Hydrodynamic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061016
.10.1115/1.4049307
29.
Yoon
,
S. Y.
,
Lin
,
Z.
, and
Allaire
,
P. E.
,
2012
,
Control of Surge in Centrifugal Compressors by Active Magnetic Bearings: Theory and Implementation
,
Springer Science & Business Media
, Springer-Verlag, London, UK.10.1007/978-1-4471-4240-9
30.
Alexandrov
,
A. G.
, and
Palenov
,
M. V.
,
2014
, “
Adaptive PID Controllers: State of the Art and Development Prospects
,”
Autom. Remote Control
,
75
, pp.
188
199
.10.1134/S0005117914020027
31.
Salem
,
F. A.
, and
Rashed
,
A. A.
,
2013
, “
PID Controllers and Algorithms: Selection and Design Techniques Applied in Mechatronics Systems Design-Part II
,”
Int. J. Eng. Sci.
,
2
(
5
), pp.
191
203
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f3b91921745719fd55687498f1428a6a4a7aba24
32.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
, pp.
341
359
.10.1023/A:1008202821328
33.
Simpson
,
T. W.
,
Poplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
, pp.
129
150
.10.1007/PL00007198
34.
Wang
,
H.
,
Li
,
E.
,
Li
,
G.
, and
Zhong
,
Z.
,
2008
, “
Development of Metamodeling Based Optimization System for High Nonlinear Engineering Problems
,”
Adv. Eng. Software
,
39
, pp.
629
645
.10.1016/j.advengsoft.2007.10.001
35.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
Dace, a Matlab Kriging Toolbox, Informatics and Mathematical Modelling
,
Technical University of Denmark, DTU
,
Lyngby–Denmark
.
36.
Dourado
,
A. D. P.
,
Barbosa
,
J. S.
,
Sicchieri
,
L.
,
Cavalini
,
A. A.
, and
Steffen
,
V.
,
2018
, “
Kriging Surrogate Model Dedicated to a Tilting-Pad Journal Bearing
,”
International Conference on Rotor Dynamics
,
Springer
, Rio de Janeiro, RJ, Brazil, pp.
347
358
.10.1007/978-3-319-99262-4_25
37.
API:684
,
2005
, “
API Standard Paragraphs Rotordynamic Tutorial: Lateral Critical Speeds, Unbalance Response, Stability, Train Torsionals, and Rotor Balancing
,”
American Petroleum Institute
(
API
)
320
, API Publishing Service, Washington, DC.https://standards.globalspec.com/std/14225369/api-tr-684-1
38.
Normalizacyjna
,
M. O.
,
2012
, “
Mechanical Vibration-Vibration of Rotating Machinery Equipped With Active Magnetic Bearings-Part 4: Technical Guidelines
,” International Organization for Standardization (
ISO
), Geneva, Switzerland.https://www.iso.org/standard/50442.html
You do not currently have access to this content.