Abstract

Dynamic vibration absorber array (DVAA) is a promising technique for vibration mitigation of integral blisk. In this paper, the effectiveness of the DVAA method is experimentally validated on a piezoelectric actuators-driven vibration test rig of a blisk, which remains static during operation. Numerical analysis on the performance of DVAA is included to instruct the design of DVAA used in experiment. The finite element model is adopted for quantitatively dynamic modeling, and a novel parametric reduced order model (PROM) is presented for the electromechanical coupling system composed of blisk, DVAA, and piezoelectric actuators. Three typical modes of the blisk are addressed to illustrate the effectiveness of DVAA for the modes with different characteristics. Then, parametric study on the performance of DVAA for the selected modes is discussed. On this basis, three series of DVAs targeting the selected modes are manufactured and tuned, and single- and multimode vibration tests are conducted to quantify the performance of DVAA via sweep-frequency approach. Numerical and experimental results illustrate the excellent performance of DVAA for different types of modes of blisk. A light-weight DVAA can achieve satisfactory single- and multimode vibration attenuation performance by properly designing and tuning the DVAA, where the amplitude reduction level can reach above 85% at some cases.

References

1.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
2.
Yuan
,
J.
,
Scarpa
,
F.
,
Allegri
,
G.
,
Titurus
,
B.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Efficient Computational Techniques for Mistuning Analysis of Bladed Discs: A Review
,”
Mech. Syst. Signal Process.
,
87
, pp.
71
90
.10.1016/j.ymssp.2016.09.041
3.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B. I.
,
2017
, “
Reduced-Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012507
.10.1115/1.4034212
4.
Baek
,
S.
, and
Epureanu
,
B.
,
2020
, “
Contact Model Identification for Friction Ring Dampers in Blisks With Reduced Order Modeling
,”
Int. J. Non-Linear Mech.
,
120
, p.
103374
.10.1016/j.ijnonlinmec.2019.103374
5.
Hartung
,
A.
,
Retze
,
U.
, and
Hackenberg
,
H.-P.
,
2017
, “
Impulse Mistuning of Blades and Vanes
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072502
.10.1115/1.4035594
6.
Tang
,
W.
, and
Epureanu
,
B. I.
,
2019
, “
Geometric Optimization of Dry Friction Ring Dampers
,”
Int. J. Non-Linear Mech.
,
109
, pp.
40
49
.10.1016/j.ijnonlinmec.2018.11.001
7.
Kelley
,
C. R.
,
Lopp
,
G. K.
, and
Kauffman
,
J. L.
,
2021
, “
Optimizing Piezoelectric Material Location and Size for Multiple-Mode Vibration Reduction of Turbomachinery Blades
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021007
.10.1115/1.4048263
8.
Lupini
,
A.
,
Shim
,
J.
, and
Epureanu
,
B. I.
,
2020
, “
Experimental and Computational Study of a Tuned Damper With Frictional Contacts
,”
AIAA J.
,
58
(
8
), pp.
3607
3613
.10.2514/1.J059393
9.
Wu
,
Y. G.
,
Li
,
L.
,
Fan
,
Y.
,
Zucca
,
S.
,
Gastaldi
,
C.
, and
Ma
,
H. Y.
,
2020
, “
Design of Dry Friction and Piezoelectric Hybrid Ring Dampers for Integrally Bladed Disks Based on Complex Nonlinear Modes
,”
Comput. Struct.
,
233
, p.
106237
.10.1016/j.compstruc.2020.106237
10.
Lupini
,
A.
, and
Epureanu
,
B. I.
,
2021
, “
A Friction-Enhanced Tuned Ring Damper for Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
143
(
1
), p.
011002
.10.1115/1.4049203
11.
Xu
,
K.
,
Yan
,
X.
,
Du
,
D.
, and
Sun
,
W.
,
2021
, “
Control of Mistuning Level Using Hard Coating for Blisks Based on Mistuning Identification Technique
,”
Aerosp. Sci. Technol.
,
111
, p.
106526
.10.1016/j.ast.2021.106526
12.
Wang
,
S.
,
Yang
,
G.
,
Ji
,
L.
,
Bi
,
C.
, and
Zheng
,
C.
,
2022
, “
Multi-Mode Vibration Attenuation of Mistuned Bladed Disks by Frictional Tuned Mass Dampers Array
,”
J. Sound Vib.
,
536
, p.
117176
.10.1016/j.jsv.2022.117176
13.
Lupini
,
A.
,
Mitra
,
M.
, and
Epureanu
,
B. I.
,
2019
, “
Application of Tuned Vibration Absorber Concept to Blisk Ring Dampers: A Nonlinear Study
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101016
.10.1115/1.4044684
14.
Wang
,
S.
,
Wang
,
F.
,
Chen
,
H.-Y.
,
Zheng
,
C.
, and
Bi
,
C.
,
2023
, “
The Vibration Attenuation Characteristics of Dynamic Vibration Absorbers Array for Tuned and Mistuned Bladed Disk
,”
ASME J. Eng. Gas Turbines Power
,
145
(
10
), p.
101008
.10.1115/1.4063228
15.
Jones
,
D. I. G.
,
Nashif
,
A. D.
, and
Stargardter
,
H.
,
1975
, “
Vibrating Beam Dampers for Reducing Vibrations in Gas Turbine Blades
,”
ASME J. Eng. Power
,
97
(
1
), pp.
111
116
.10.1115/1.3445888
16.
Hollkamp
,
J. J.
,
Bagley
,
R. L.
, and
Gordon
,
R. W.
,
1999
, “
A Centrifugal Pendulum Absorber for Rotating, Hollow Engine Blades
,”
J. Sound Vib.
,
219
(
3
), pp.
539
549
.10.1006/jsvi.1998.1964
17.
Olson
,
B. J.
,
Shaw
,
S. W.
, and
Pierre
,
C.
,
2005
, “
Order-Tuned Vibration Absorbers for Cyclic Rotating Flexible Structures
,”
ASME
Paper No. DETC2005-84641.10.1115/DETC2005-84641
18.
Olson
,
B. J.
, and
Shaw
,
S. W.
,
2010
, “
Vibration Absorbers for a Rotating Flexible Structure With Cyclic Symmetry: Nonlinear Path Design
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
149
182
.10.1007/s11071-009-9587-8
19.
Mitra
,
M.
,
Lupini
,
A.
, and
Epureanu
,
B. I.
,
2019
, “
A Study on the Application of Tuned Vibration Absorbers to Nominally Cyclic Structures
,”
ASME
Paper No. GT2019-90167.10.1115/GT2019-90167
20.
Elias
,
S.
, and
Matsagar
,
V.
,
2017
, “
Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers
,”
Annu. Rev. Control
,
44
, pp.
129
156
.10.1016/j.arcontrol.2017.09.015
21.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
You do not currently have access to this content.