Abstract

This experimental study characterizes the performance of a radial rotating detonation combustor (RDC). An aerospike nozzle for rocket propulsion has been integrated into the center of the combustor, although the same combustor could also be coupled with turbomachinery. The radial RDC (RRDC) utilized a rapid to gradual (RTG) area change in the flow direction to effectively confine the detonation region close to the inlet plane and to improve the uniformity of the flow exiting the RDC. Three test cases were analyzed, (a) a baseline case at a total reactant mass flowrate, m˙ = 0.136 kg/s and equivalence ratio, ϕ = 0.6, (b) a higher reactant flowrate, m˙ = 0.318 kg/s and ϕ = 0.6, and (c) a higher ϕ = 0.8 at m˙ = 0.318 kg/s. All tests were conducted using methane and a 67% oxygen and 33% nitrogen (by mole) oxidizer mixture. Measurements were acquired using CTAP probes inside the combustion channel and along the aerospike to characterize the performance, PCB and ion probes near the detonation region to identify wave modes and their variations during the test, and thrust measurements using a six-axis force sensor. Results show highly complex wave modes with multiple corotating and/or counter-rotating waves depending upon the reactant flowrate. The pressure and thrust measurements are consistent with the wave mode analysis. In general, a positive (combustor only) pressure gain was inferred when losses associated with the injection system were excluded. The study highlights the challenges associated with fuel–air mixing and integrating the RDC with downstream hardware.

References

1.
Kailasanath
,
K.
,
2020
, “
Recent Developments in the Research on Pressure-Gain Combustion Devices
,”
Innovations in Sustainable Energy and Cleaner Environment
, Springer, Berlin, pp.
3
21
.
2.
Neumann
,
N.
,
Berthold
,
A.
,
Haucke
,
F.
,
Peitsch
,
D.
, and
Stathopoulos
,
P.
,
2021
, “
Pulsed Impingement Turbine Cooling and Its Effect on the Efficiency of Gas Turbines With Pressure Gain Combustion
,”
ASME J. Turbomach.
,
143
(
7
), p.
071016
.10.1115/1.4050361
3.
Gulen
,
S.
,
2017
, “
Pressure Gain Combustion Advantage in Land-Based Electric Power Generation
,”
J. Global Power Propul. Soc.
,
1
, pp.
288
302
.10.22261/JGPPS.K4MD26
4.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
5.
Kailasanath
,
K.
,
2011
, “
The Rotating Detonation-Wave Engine Concept: A Brief Status Report
,”
AIAA
Paper No. 2011-580.10.2514/6.2011-580
6.
Kailasanath
,
K.
,
2017
, “
Recent Developments in the Research on Rotating-Detonation-Wave Engines
,”
AIAA
Paper No. 2017-0784.10.2514/6.2017-0784
7.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.10.2514/1.B34802
8.
Kailasanath
,
K.
,
Schwer
,
D.
,
Kailasanath
,
K.
, and
Schwer
,
D. A.
,
2017
, “
High-Fidelity Simulations of Pressure-Gain Combustion Devices Based on Detonations
,”
J. Propul. Power
,
33
(
1
), pp.
153
162
.10.2514/1.B36169
9.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.10.1016/j.pecs.2019.04.001
10.
Depperschmidt
,
D. L.
,
2019
,
Investigation of Methane-Fueled Rotating Detonation Combustor Exhaust Flow Field Via Time-Resolved Particle Image Velocimetry
,
The University of Alabama
, Tuscaloosa, AL.
11.
Depperschmidt
,
D.
,
Miller
,
R.
,
Tobias
,
J.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Stout
,
J. B.
,
2019
, “
Time-Resolved PIV Diagnostics to Measure Flow Field Exiting Methane-Fueled Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-1514.10.2514/6.2019-1514
12.
Tobias
,
J. R.
, and
Agrawal
,
A. K.
,
2023
, “
Flow Development in Radial Plane of Rotating Detonation Engine Integrated With Aerospike
,”
J. Propul. Power
,
39
(
3
), pp.
318
330
.10.2514/1.B38874
13.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.10.1115/1.4041135
14.
Naples
,
A.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2014
, “
Rotating Detonation Engine Interaction With an Annular Ejector
,”
AIAA
Paper No. 2014-028710.2514/6.2014-0287.
15.
Bykovskii
,
F. A.
,
Vasil'ev
,
A. A.
,
Vedernikov
,
E. F.
, and
Mitrofanov
,
V. V.
,
1995
, “
Explosive Combustion of a Gas Mixture in Radial Annular Chambers
,”
Combust., Explos. Shock Waves
,
30
(
4
), pp.
510
516
.10.1007/BF00790158
16.
Bykovskii
,
F. A.
,
Mitrofanov
,
V. V.
, and
Vedernikov
,
E. F.
,
1997
, “
Continuous Detonation Combustion of Fuel-Air Mixtures
,”
Combust., Explos. Shock Waves
,
33
(
3
), pp.
344
353
.10.1007/BF02671875
17.
Huff
,
R.
,
Polanka
,
M. D.
,
McClearn
,
M. J.
,
Schauer
,
F.
,
Fotia
,
M. L.
, and
Hoke
,
J.
,
2018
, “
A Disk Rotating Detonation Engine Driven Auxiliary Power Unit
,”
AIAA
Paper No. 2018-4879.10.2514/6.2018-4879
18.
Huff
,
R.
,
Schauer
,
F.
,
Boller
,
S. A.
,
Polanka
,
M. D.
,
Fotia
,
M.
, and
Hoke
,
J.
,
2019
, “
Exit Condition Measurements of a Radial Rotating Detonation Engine Bleed Air Turbine
,”
AIAA
Paper No. 2019-1011.10.2514/6.2019-1011
19.
Boller
,
S. A.
,
Polanka
,
M. D.
,
Huff
,
R.
,
Schauer
,
F.
,
Fotia
,
M.
, and
Hoke
,
J.
,
2019
, “
Experimental Flow Visualization in a Radial Rotating Detonation Engine
,”
AIAA
Paper No. 2019-1253.10.2514/6.2019-1253
20.
Huff
,
R.
,
Polanka
,
M. D.
,
McClearn
,
M. J.
,
Schauer
,
F. R.
,
Fotia
,
M. L.
, and
Hoke
,
J. L.
,
2019
, “
Design and Operation of a Radial Rotating Detonation Engine
,”
J. Propul. Power
,
35
(
6
), pp.
1143
1150
.10.2514/1.B37578
21.
Muraleetharan
,
K.
,
Polanka
,
M. D.
,
Schauer
,
F. R.
, and
Huff
,
R.
,
2020
, “
Detonation Confinement Using a Flat Channel Plate in a Radial Rotating Detonation Engine
,”
AIAA
Paper No. 2020-0200.10.2514/6.2020-0200
22.
Ursino
,
J. T.
,
Polanka
,
M. D.
, and
Muraleetharan
,
K.
,
2023
, “
Second-Generation Development of a Radial Rotating Detonation Engine
,”
AIAA
Paper No. 2023-0576.10.2514/6.2023-0576
23.
Paxson
,
D. E.
,
2020
, “
Preliminary Computational Assessment of Disk Rotating Detonation Engine Configurations
,”
AIAA
Paper No. 2020-2157.10.2514/6.2020-2157
24.
Langner
,
D.
,
Gupta
,
A.
,
Miller
,
R.
, and
Agrawal
,
A. K.
,
2022
, “
Design and Implementation of a Disk-Shaped Radial Rotating Detonation Engine With Integrated Aerospike
,”
AIAA
Paper No. 2022-0642.10.2514/6.2022-0642
25.
Langner
,
D.
,
Gupta
,
A.
,
Talukdar
,
S.
, and
Agrawal
,
A. K.
,
2023
, “
Multi-Wave Operation of a Radial Rotating Detonation Engine With Integrated Aerospike
,”
AIAA
Paper No. 2023-0578.10.2514/6.2023-0578
26.
Gupta
,
A.
,
Langner
,
D.
, and
Agrawal
,
A. K.
,
2022
, “
Experimental Analysis of Radial Rotating Detonation Engine With Integrated Aerospike
,”
AIAA
Paper No. 2022-1878.10.2514/6.2022-1878
27.
Gupta
,
A.
,
Langner
,
D.
,
Miller
,
R.
,
Sawaya
,
S.
, and
Agrawal
,
A. K.
,
2023
, “
Imaging Exhaust Flow of Radial RDE Using Rainbow Schlieren Deflectometry
,”
AIAA
Paper No. 2023-2391.10.2514/6.2023-2391
28.
Langner
,
D. G.
,
Gupta
,
A.
,
McClinton
,
D. A.
, and
Agrawal
,
A. K.
,
2022
, “
Wave Mode Characteristics of a Radial Rotating Detonation Engine
,”
2022 Spring Technical Meeting of the Central States Section of the Combustion Institute
, Detroit, MI, May 15–17.https://www.researchgate.net/publication/365410415_Wave_Mode_Characteristics_of_a_Radial_Rotating_Detonation_Engine
29.
Paxson
,
D. E.
,
2023
, “
Computational Assessment of the Impact of Wave Count on Rotating Detonation Engine Performance
,”
AIAA
Paper No. 2023-1290.10.2514/6.2023-1290
30.
Langner
,
D.
,
Gupta
,
A.
,
Talukdar
,
S.
, and
Agrawal
,
A. K.
,
2024
, “
Performance of a Radial Rotating Detonation Engine With an Aerospike
,”
AIAA
Paper No. 2024-2608.10.2514/6.2024-2608
31.
Sato
,
T.
,
Chacon
,
F.
,
Gamba
,
M.
, and
Raman
,
V.
,
2021
, “
Mass Flow Rate Effect on a Rotating Detonation Combustor With an Axial Air Injection
,”
Shock Waves
,
31
(
7
), pp.
741
751
.10.1007/s00193-020-00984-7
32.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Hargus
,
W. A.
,
Danczyk
,
S. A.
, and
Smith
,
R. D.
,
2018
, “
Characterization of Detonation Wave Propagation in a Rotating Detonation Rocket Engine Using Direct High-Speed Imaging
,”
AIAA
Paper No. 2018-4688.10.2514/6.2018-4688
33.
Chacon
,
F.
, and
Gamba
,
M.
,
2019
, “
Detonation Wave Dynamics in a Rotating Detonation Engine
,”
AIAA
Paper No. 2019-0198.10.2514/6.2019-0198
34.
Bohon
,
M. D.
,
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2019
, “
High-Speed Imaging of Wave Modes in an RDC
,”
Exp. Therm. Fluid Sci.
,
102
, pp.
28
37
.10.1016/j.expthermflusci.2018.10.031
35.
Johnson
,
K.
,
Ferguson
,
D. H.
, and
Nix
,
A.
,
2020
, “
Validation of Cross-Correlation Detonation Wave Mode Identification Through High-Speed Image Analysis
,”
AIAA
Paper No. 2020-1179.10.2514/6.2020-1179
36.
Welch
,
C.
,
Depperschmidt
,
D.
,
Miller
,
R.
,
Tobias
,
J.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Lowe
,
S.
,
2018
, “
Experimental Analysis of Wave Propagation in a Methane-Fueled Rotating Detonation Combustor
,”
ASME
Paper No. GT2018-77258.10.1115/GT2018-77258
37.
Bohon
,
M. D.
,
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2019
, “
Measuring Rotating Detonation Combustion Using Cross-Correlation
,”
Flow, Turbul. Combust.
,
103
(
1
), pp.
271
292
.10.1007/s10494-019-00017-z
38.
Bell
,
K.
,
Schwer
,
D. A.
, and
Agrawal
,
A. K.
,
2021
, “
Effect of Cross-Sectional Area Profiling on the Performance of Disk Rotating Detonation Combustor
,”
AIAA
Paper No. 2021-1252.10.2514/6.2021-1252
39.
Bell
,
K.
,
Schwer
,
D.
, and
Agrawal
,
A. K.
,
2023
, “
Profiling Cross-Sectional Area of a Radial Rotating Detonation Combustor to Increase Pressure Gain
,”
Aerosp. Sci. Technol.
,
133
, p.
108096
.10.1016/j.ast.2022.108096
40.
Bell
,
K.
, and
Agrawal
,
A. K.
,
2024
, “
Numerical Analysis of a Reacting Radial Rotating Detonation Combustor for Different Cross-Sectional Areas
,”
AIAA
Paper No. 2024-2432.10.2514/6.2024-2432
41.
Brophy
,
C. M.
, and
Codoni
,
J.
,
2019
, “
Experimental Performance Characterization of an RDE Using Equivalent Available Pressure
,”
AIAA
Paper No. 2019-4212.10.2514/6.2019-4212
42.
Codoni
,
J. R.
,
Birindelli
,
G.
,
Thoeny
,
A.
, and
Brophy
,
C. M.
,
2022
, “
Experimental Approaches for Obtaining a Temporally-and Spatially-Averaged Representative Static Pressure for Rotating Detonation Engines
,”
AIAA
Paper No. 2022-2369.10.2514/6.2022-2369
43.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Pilgram
,
J. J.
, and
Hargus
,
W. A.
, Jr.
,
2019
, “
Modal Transitions in Rotating Detonation Rocket Engines
,”
Int. J. Energ. Mater. Chem. Propul.
,
18
(
2
), pp.
91
109
.10.1615/IntJEnergeticMaterialsChemProp.2019027880
44.
Batista
,
A.
,
Ross
,
M.
,
Lietz
,
C.
, and
Hargus
,
W. A.
,
2021
, “
Descending Modal Transition Study in a Rotating Detonation Rocket Engine
,”
AIAA
Paper No. 2021-0191.10.2514/6.2021-0191
45.
Koch
,
J.
,
Kurosaka
,
M.
,
Knowlen
,
C.
, and
Kutz
,
J. N.
,
2021
, “
Multiscale Physics of Rotating Detonation Waves: Autosolitons and Modulational Instabilities
,”
Phys. Rev. E
,
104
(
2
), p.
024210
.10.1103/PhysRevE.104.024210
46.
Johnson
,
K.
,
Weber
,
J.
,
Ferguson
,
D. H.
, and
Nix
,
A. C.
,
2023
, “
Analysis of Quasi-Steady, Transitional, and Short Timescale Galloping Within Rotating Detonation Engines
,”
AIAA
Paper No. 2023-0931.10.2514/6.2023-0931
You do not currently have access to this content.