Abstract

Interest in ammonia (NH3) in combustion has increased in recent years as a carbon-free fuel alternative. Therefore, understanding its combustion characteristics is crucial. One way to increase the knowledge of ammonia combustion is by investigating the flame zone of a laminar flame. Using a high-spatial-resolution flame zone measurement technique developed by the current research group, the flame zone of different NH3-containing mixtures was measured experimentally. Those measurements were achieved by investigating spherically propagating flames using a chemiluminescence imaging diagnostic with the focus on NH2* profiles. The effect of the fuel mixture on the profile shape was investigated by examining two different mixtures. The first was an oxy-ammonia mixture consisting of NH3 + oxygen-enriched oxidizer where the oxygen (O2) concentration was varied from 25% to 40%. The second was a blend of NH3–H2 where the NH3 concentration (XNH3) was varied from 0.5 to 0.8. Additionally, the effect of the initial temperature was investigated by varying it from 293 to 373 K for three different mixtures, namely, NH3 + (35% O2 + 65% N2), (0.7 NH3 + 0.3 H2)/air, and (0.45 H2 + 0.4 NH3 + 0.15 N2)/air. In all investigated mixtures, the initial pressure was fixed at 1 atm, and the equivalence ratio was fixed at Φ = 1.0. The study revealed that increasing the O2 concentration in the oxy-ammonia mixture produced thinner flames. On the contrary, increasing the XNH3 in the NH3–H2 blend produced slightly thicker flames. Varying the initial temperature has two different responses for the three designated mixtures. In the oxy-ammonia mixture and the NH3–H2 blend, increasing the initial temperature resulted in the flame being thinner. On the other hand, increasing the initial temperature produced a slightly thicker flame for the H2–NH3–N2 blend. The predicted NH2* profile thicknesses from chemical kinetics agree with the measurements except for the H2-NH3–N2 blend, where the kinetics model underpredicted the thickness by a significant difference.

References

1.
Zakaznov
,
V. F.
,
Kursheva
,
L. A.
, and
Fedina
,
Z. I.
,
1978
, “
Determination of Normal Flame Velocity and Critical Diameter of Flame Extinction in Ammonia-Air Mixture
,”
Combust. Explos. Shock Waves
,
14
(
6
), pp.
710
713
.10.1007/BF00786097
2.
Ronney
,
P. D.
,
1988
, “
Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity
,”
Combust. Sci. Technol.
,
59
(
1–3
), pp.
123
141
.10.1080/00102208808947092
3.
Pfahl
,
U. J.
,
Ross
,
M. C.
,
Shepherd
,
J. E.
,
Pasamehmetoglu
,
K. O.
, and
Unal
,
C.
,
2000
, “
Flammability Limits, Ignition Energy, and Flame Speeds in H2–CH4–NH3–N2O–O2–N2 Mixtures
,”
Combust. Flame
,
123
(
1–2
), pp.
140
158
.10.1016/S0010-2180(00)00152-8
4.
Jabbour
,
T.
, and
Clodic
,
D. F.
,
2004
, “
Burning Velocity and Refrigerant Flammability Classification/Discussion
,”
ASHRAE Trans.
,
110
, pp.
522
533
.https://store.accuristech.com/ashrae/standards/na-04-1-3-burning-velocity-and-refrigerant-flammability-classification?product_id=1717968#product
5.
Takizawa
,
K.
,
Takahashi
,
A.
,
Tokuhashi
,
K.
,
Kondo
,
S.
, and
Sekiya
,
A.
,
2008
, “
Burning Velocity Measurements of Nitrogen-Containing Compounds
,”
J. Hazard. Mater.
,
155
(
1–2
), pp.
144
152
.10.1016/j.jhazmat.2007.11.089
6.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.10.1016/j.fuel.2015.06.070
7.
Ichikawa
,
A.
,
Hayakawa
,
A.
,
Kitagawa
,
Y.
,
Kunkuma Amila Somarathne
,
K. D.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Hydrogen/Air Premixed Flames at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
40
(
30
), pp.
9570
9578
.10.1016/j.ijhydene.2015.04.024
8.
Li
,
Y.
,
Bi
,
M.
,
Li
,
B.
, and
Gao
,
W.
,
2018
, “
Explosion Behaviors of Ammonia–Air Mixtures
,”
Combust. Sci. Technol.
,
190
(
10
), pp.
1804
1816
.10.1080/00102202.2018.1473859
9.
Han
,
X.
,
Wang
,
Z.
,
Costa
,
M.
,
Sun
,
Z.
,
He
,
Y.
, and
Cen
,
K.
,
2019
, “
Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/Air, NH3/H2/Air, NH3/CO/Air and NH3/CH4/Air Premixed Flames
,”
Combust. Flame
,
206
, pp.
214
226
.10.1016/j.combustflame.2019.05.003
10.
Mei
,
B.
,
Zhang
,
X.
,
Ma
,
S.
,
Cui
,
M.
,
Guo
,
H.
,
Cao
,
Z.
, and
Li
,
Y.
,
2019
, “
Experimental and Kinetic Modeling Investigation on the Laminar Flame Propagation of Ammonia Under Oxygen Enrichment and Elevated Pressure Conditions
,”
Combust. Flame
,
210
, pp.
236
246
.10.1016/j.combustflame.2019.08.033
11.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Lamoureux
,
N.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2020
, “
Experimental Investigation on Laminar Burning Velocities of Ammonia/Hydrogen/Air Mixtures at Elevated Temperatures
,”
Fuel
,
263
, p.
116653
.10.1016/j.fuel.2019.116653
12.
Shrestha
,
K. P.
,
Lhuillier
,
C.
,
Barbosa
,
A. A.
,
Brequigny
,
P.
,
Contino
,
F.
,
Mounaïm-Rousselle
,
C.
,
Seidel
,
L.
, and
Mauss
,
F.
,
2021
, “
An Experimental and Modeling Study of Ammonia With Enriched Oxygen Content and Ammonia/Hydrogen Laminar Flame Speed at Elevated Pressure and Temperature
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2163
2174
.10.1016/j.proci.2020.06.197
13.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.10.1016/j.combustflame.2017.09.002
14.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.10.1016/j.ijhydene.2017.12.066
15.
Jarosinski
,
J.
,
1984
, “
The Thickness of Laminar Flames
,”
Combust. Flame
,
56
(
3
), pp.
337
342
.10.1016/0010-2180(84)90067-1
16.
Zel'dovich
,
Y. B.
,
1944
, “
The Theory of Combustion and Detonation
,” Russian Academy of Sciences, Moscow, Russia.
17.
Andrews
,
G. E.
, and
Bradley
,
D.
,
1973
, “
Determination of Burning Velocity by Double Ignition in a Closed Vessel
,”
Combust. Flame
,
20
(
1
), pp.
77
89
.10.1016/S0010-2180(73)81259-3
18.
Spalding
,
D. B.
, and
Jain
,
V. K.
,
1961
, “
The Theory of Steady Laminar Spherical Flame Propagation: Analytical Solutions
,”
Combust. Flame
,
5
, pp.
11
18
.10.1016/0010-2180(61)90068-2
19.
Gaydon
,
A. G.
, and
Wolfhard
,
H. G.
,
1979
,
Flames: Their Structure, Radiation, and Temperature
,
Halsted Press
,
Ultimo, Australia
.
20.
Chen
,
X.
,
Liu
,
Q.
,
Jing
,
Q.
,
Mou
,
Z.
,
Shen
,
Y.
,
Huang
,
J.
, and
Ma
,
H.
,
2021
, “
Flame Front Evolution and Laminar Flame Parameter Evaluation of Buoyancy-Affected Ammonia/Air Flames
,”
Int. J. Hydrogen Energy
,
46
(
77
), pp.
38504
38518
.10.1016/j.ijhydene.2021.09.099
21.
Karan
,
A.
,
Dayma
,
G.
,
Chauveau
,
C.
, and
Halter
,
F.
,
2023
, “
Insight Into the Inner Structure of Stretched Premixed Ammonia-Air Flames
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
1743
1752
.10.1016/j.proci.2022.07.066
22.
Turner
,
M. A.
,
Paschal
,
T. T.
,
Parajuli
,
P.
,
Kulatilaka
,
W. D.
, and
Petersen
,
E. L.
,
2021
, “
Resolving Flame Thickness Using High-Speed Chemiluminescence Imaging of OH* and CH* in Spherically Expanding Methane–Air Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2101
2108
.10.1016/j.proci.2020.07.112
23.
Morones Ruelas
,
A.
,
2018
, “
Study of Turbulent Spherical Flames in a Reconfigurable Fan-Stirred Flame Bomb
,”
Ph.D. thesis
, Texas A&M University, College Station, TX.https://hdl.handle.net/1969.1/174425
24.
Morones
,
A.
,
Turner
,
M. A.
,
León
,
V.
,
Ruehle
,
K.
, and
Petersen
,
E. L.
,
2019
, “
Validation of a New Turbulent Flame Speed Facility for the Study of Gas Turbine Fuel Blends at Elevated Pressure
,”
ASME
Paper No. GT2019-90394.10.1115/GT2019-90394
25.
Jiang
,
Y.
,
Gruber
,
A.
,
Seshadri
,
K.
, and
Williams
,
F.
,
2020
, “
An Updated Short Chemical-Kinetic Nitrogen Mechanism for Carbon-Free Combustion Applications
,”
Int. J. Energy Res.
,
44
(
2
), pp.
795
810
.10.1002/er.4891
26.
Wiseman
,
S.
,
Rieth
,
M.
,
Gruber
,
A.
,
Dawson
,
J. R.
, and
Chen
,
J. H.
,
2021
, “
A Comparison of the Blow-Out Behavior of Turbulent Premixed Ammonia/Hydrogen/Nitrogen-Air and Methane–Air Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2869
2876
.10.1016/j.proci.2020.07.011
27.
Turner
,
M. A.
,
2023
, “
Spherical Flame Front Thickness and Instability
,” Ph.D. dissertation,
Texas A&M University
,
College Station, TX
.
28.
Almarzooq
,
Y. M.
,
Hay
,
M.
,
Turner
,
M. A.
,
Kulatilaka
,
W. D.
, and
Petersen
,
E. L.
,
2023
, “
Laminar Flame Speed and Emission Spectra of Ammonia Spherical Flames for an Oxygenated Mixture
,” 13th U.S. National Combustion Meeting, College Station, TX, Mar
19
22
.
29.
Hansen
,
E. W.
, and
Law
,
P.-L.
,
1985
, “
Recursive Methods for Computing the Abel Transform and Its Inverse
,”
J. Opt. Soc. Am. A
,
2
(
4
), pp.
510
520
.10.1364/JOSAA.2.000510
30.
Hansen
,
E.
,
1985
, “
Fast Hankel Transform Algorithm
,”
IEEE Trans. Acoust., Speech Signal Process.
,
33
(
3
), pp.
666
671
.10.1109/TASSP.1985.1164579
31.
Karan
,
A.
,
Grégoire
,
C. M.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Dayma
,
G.
,
Chauveau
,
C.
, and
Halter
,
F.
,
2023
, “
Experimental and Detailed Kinetics Modelling Study of NH2* Chemiluminescence During Ammonia Combustion
,”
13th U.S. National Combustion Meeting
, College Station, TX, Mar
19
22
.https://www.researchgate.net/publication/369440929_Experimental_and_detailed_modelling_study_of_NH2_chemiluminescence_during_ammonia_combustion
32.
Konnov
,
A. A.
,
2023
, “
An Exploratory Modelling Study of Chemiluminescence in Ammonia-Fuelled Flames—Part 2
,”
Combust. Flame
,
253
, p.
112789
.10.1016/j.combustflame.2023.112789
You do not currently have access to this content.