Abstract

In this study, a dynamic thickening strategy for dynamic thickened flame model for large eddy simulations (DTFLES) application to multi-regime combustion is proposed. The main idea lies in using the numerical solution of an ordinary differential equation (ODE) as a thickening factor. The equation relates the time derivative of the local thickening factor to its production and destruction rates, which are proportional to the gap between the instantaneous value and optimal target values. The smoothness of the thickening factor in time is ensured by the ODE solution, while in space it is achieved through a mathematical function defined in a continuous flame index space. The equation is numerically integrated with a semi-implicit scheme by making use of the backward Euler formula. The strategy has been implemented in a commercial computational fluid dynamics (CFD) solver and it has been tested by performing Large Eddy Simulations of the hydrogen/air flame produced by the HYLON injector, which has been individuated as an interesting test case for the proposed dynamic strategy. Turbulence-chemistry interactions are recovered by means of a well-assessed subgrid efficiency model. Numerical results are compared with the experimental ones obtained at Institut de Mécanique des Fluides de Toulouse (IMFT).

References

1.
Fiorina
,
B.
,
Luu
,
T. P.
,
Dillon
,
S.
,
Mercier
,
R.
,
Wang
,
P.
,
Angelilli
,
L.
,
Ciottoli
,
P. P.
, et al.,
2023
, “
A Joint Numerical Study of Multi-Regime Turbulent Combustion
,”
Appl. Energy Combust. Sci.
,
16
, p.
100221
.10.1016/j.jaecs.2023.100221
2.
Knudsen
,
E.
, and
Pitsch
,
H.
,
2012
, “
Capabilities and Limitations of Multi-Regime Flamelet Combustion Models
,”
Combust. Flame
,
159
(
1
), pp.
242
264
.10.1016/j.combustflame.2011.05.025
3.
Zhang
,
W.
,
Han
,
W.
,
Wang
,
J.
,
Huang
,
Z.
,
Jin
,
W.
, and
van Oijen
,
J.
,
2023
, “
Large-Eddy Simulation of the Darmstadt Multi-Regime Turbulent Flame Using Flamelet-Generated Manifolds
,”
Combust. Flame
,
257
, p.
113001
.10.1016/j.combustflame.2023.113001
4.
Langella
,
I.
,
Swaminathan
,
N.
, and
Pitz
,
R. W.
,
2016
, “
Application of Unstrained Flamelet SGS Closure for Multi-Regime Premixed Combustion
,”
Combust. Flame
,
173
, pp.
161
178
.10.1016/j.combustflame.2016.08.025
5.
Massey
,
J. C.
,
Li
,
Z.
,
Chen
,
Z. X.
,
Tanaka
,
Y.
, and
Swaminathan
,
N.
,
2023
, “
Large Eddy Simulation of Multi-Regime Combustion With a Two-Progress Variable Approach for Carbon Monoxide
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
2117
2127
.10.1016/j.proci.2022.10.009
6.
Engelmann
,
L.
,
Wollny
,
P.
,
Breicher
,
A.
,
Geyer
,
D.
,
Chakraborty
,
N.
, and
Kempf
,
A.
,
2023
, “
Numerical Analysis of Multi-Regime Combustion Using Flamelet Generated Manifolds - A Highly-Resolved Large-Eddy Simulation of the Darmstadt Multi-Regime Burner
,”
Combust. Flame
,
251
, p.
112718
.10.1016/j.combustflame.2023.112718
7.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
8.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program, Centre for Turbulence Research
, Stanford, CA, Nov., pp.
157
168
.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
9.
Cuenot
,
B.
,
Shum-Kivan
,
F.
, and
Blanchard
,
S.
,
2022
, “
The Thickened Flame Approach for Non-Premixed Combustion: Principles and Implications for Turbulent Combustion Modeling
,”
Combust. Flame
,
239
, p.
111702
.10.1016/j.combustflame.2021.111702
10.
Yamashita
,
H.
,
Shimada
,
M.
, and
Takeno
,
T.
,
1996
, “
A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
27
34
.10.1016/S0082-0784(96)80196-2
11.
Zirwes
,
T.
,
Zhang
,
F.
,
Habisreuther
,
P.
,
Hansinger
,
M.
,
Bockhorn
,
H.
,
Pfitzner
,
M.
, and
Trimis
,
D.
,
2021
, “
Identification of Flame Regimes in Partially Premixed Combustion From a Quasi-DNS Dataset
,”
Flow, Turbul. Combust.
, (
106
(
2
), pp.
373
404
.10.1007/s10494-020-00228-9
12.
Castellani
,
S.
,
Meloni
,
R.
,
Orsino
,
S.
,
Ansari
,
N.
,
Yadav
,
R.
,
Bessette
,
D.
,
Boxx
,
I.
, and
Andreini
,
A.
,
2023
, “
High-Fidelity H2–CH4 Jet in Crossflow Modelling With a Flame Index-Controlled Artificially Thickened Flame Model
,”
Int. J. Hydrogen Energy
,
48
(
90
), pp.
35291
35304
.10.1016/j.ijhydene.2023.05.210
13.
Aniello
,
A.
,
Laera
,
D.
,
Marragou
,
S.
,
Magnes
,
H.
,
Selle
,
L.
,
Schuller
,
T.
, and
Poinsot
,
T.
,
2023
, “
Experimental and Numerical Investigation of Two Flame Stabilization Regimes Observed in a Dual Swirl H2-Air Coaxial Injector
,”
Combust. Flame
,
249
, p.
112595
.10.1016/j.combustflame.2022.112595
14.
Jaravel
,
T.
,
2016
, “
Prediction of Pollutants in Gas Turbines Using Large Eddy Simulation
,”
Ph.D. thesis
,
Institut National Polytechnique de Toulouse
, Toulouse, France.https://theses.hal.science/tel-04244436v1
15.
Vilespy
,
M.
,
Marragou
,
S.
,
Magnes
,
H.
,
Aniello
,
A.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Measurements Dataset of Hydrogen/Air Flames in a Dual Swirl Coaxial Injector
,” TNF Workshop, accessed Aug. 22, 2024, https://tnfworkshop.org/hylon-hydrogen-air-flames-in-a-dual-swirl-coaxial-injector-imft-toulouse/
16.
Rochette
,
B.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Vermorel
,
O.
,
2020
, “
A Generic and Self-Adapting Method for Flame Detection and Thickening in the Thickened Flame Model
,”
Combust. Flame
,
212
, pp.
448
458
.10.1016/j.combustflame.2019.11.015
17.
Marragou
,
S.
,
Magnes
,
H.
,
Aniello
,
A.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Experimental Analysis and Theoretical Lift-Off Criterion for H2/Air Flames Stabilized on a Dual Swirl Injector
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4345
4354
.10.1016/j.proci.2022.07.255
18.
Marragou
,
S.
,
Magnes
,
H.
,
Aniello
,
A.
,
Guiberti
,
T.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Modeling of H2/Air Flame Stabilization Regime Above Coaxial Dual Swirl Injectors
,”
Combust. Flame
,
255
, p.
112908
.10.1016/j.combustflame.2023.112908
19.
Magnes
,
H.
,
Marragou
,
S.
,
Aniello
,
A.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Impact of Preheating on Flame Stabilization and NOx Emissions From a Dual Swirl Hydrogen Injector
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051004
.10.1115/1.4063719
20.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I–The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
21.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid‐Scale Eddy Viscosity Model
,”
Phys. Fluids A Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
22.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid‐Scale Closure Method
,”
Phys. Fluids A Fluid Dyn.
,
4
(
3
), pp.
633
635
.10.1063/1.858280
23.
Boivin
,
P.
,
2011
, “
Reduced-Kinetic Mechanisms for Hydrogen and Syngas Combustion Including Autoignition
,”
Ph.D. thesis
,
Departamento De Ingeniería Térmica y De Fluidos Escuela Politécnica Superior
, Universidad Carlos III de Madrid, Madrid, Spain.https://e-archivo.uc3m.es/rest/api/core/bitstreams/5611fad1-97d4-4561-aac9-a8310bcf6d7c/content#:~:text=Reduced%20chemical%2Dkinetic%20mechanisms%20are,turbulent%20combustion%20or%20the%20transition
24.
Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego
, 2012, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” San Diego Mechanism, accessed Aug. 22, 2024, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
25.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.6.0.10.5281/zenodo.6387882
26.
Durand
,
L.
, and
Polifke
,
W.
,
2007
, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,”
ASME
Paper No. GT2007-28188.10.1115/GT2007-28188
You do not currently have access to this content.