Abstract

Flame stabilization, flame structure, and pollutant emissions are investigated experimentally on a swirled injection system operating with globally lean air/hydrogen mixtures at atmospheric conditions and moderate Reynolds numbers. This injector consists of two coaxial ducts with separate injection of hydrogen into a central channel and of air into an annular channel. Both streams are swirled. The resulting flames exhibit two stabilization modes. In one case, the flame takes an M-shape and is anchored to the hydrogen injector lips. In the second case, the flame is aerodynamically stabilized above the injector and takes a V-shape. Regions of existence of each stabilization mode are determined according to the operating conditions. For low air flow rates, the flame can be either anchored or lifted above the hydrogen injector lips depending on the path followed to reach the operating condition. At high air flow rates, the flame is always lifted regardless of the trajectory followed. The impact of air inlet temperature on these stabilization regimes is then evaluated from T= 300 K up to 770 K. Flame re-attachment is shown to be controlled by edge flame propagation and the impact of preheating is well reproduced by the model. Unburnt hydrogen and NOx emissions are finally evaluated. Unburnt hydrogen is only observed for global equivalence ratios below 0.4 and at ambient inlet temperature. NOx emissions decrease when the global equivalence ratio is reduced. Furthermore, at fixed global equivalence ratio, NOx emissions decrease as the thermal power increases, regardless of air preheating and the flame stabilization regime. At high power, NOx emissions reach an asymptotic value that is independent of the thermal power. The impact of flame shape, air preheating, and combustion chamber wall heat losses on NOx production is also evaluated. NOx emissions are shown to scale with the adiabatic flame temperature Tad at the global equivalence ratio and the residence time inside the combustor.

References

1.
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2014
, “
Recent Advances in Understanding of Flammability Characteristics of Hydrogen
,”
Prog. Energy Combust. Sci.
,
41
(
1
), pp.
1
55
.10.1016/j.pecs.2013.10.002
2.
Yahou
,
T.
,
Dawson
,
J. R.
, and
Schuller
,
T.
,
2023
, “
Impact of Chamber Back Pressure on the Ignition Dynamics of Hydrogen Enriched Premixed Flames
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4641
4650
.10.1016/j.proci.2022.07.236
3.
European Turbine Network (ETN Global)
,
2020
, “
Hydrogen Gas Turbines: The Path Towards a Zero-Carbon Gas Turbine
,” ETN Global, Bruxelles, Belgium, accessed Oct. 31, 2023, https://etn.global/wp-content/uploads/2020/01/ETN-Hydrogen-Gas-Turbines-report.pdf
4.
Skottene
,
M.
, and
Rian
,
K. E.
,
2007
, “
A Study of NOx Formation in Hydrogen Flames
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3572
3585
.10.1016/j.ijhydene.2007.02.038
5.
Du Toit
,
M. H.
,
Avdeenkov
,
A. V.
, and
Bessarabov
,
D.
,
2018
, “
Reviewing H2 Combustion: A Case Study for Non-Fuel-Cell Power Systems and Safety in Passive Autocatalytic Recombiners
,”
Energy Fuels
,
32
(
6
), pp.
6401
6422
.10.1021/acs.energyfuels.8b00724
6.
Dodo
,
S.
,
Asai
,
T.
,
Koizumi
,
H.
,
Takahashi
,
H.
,
Yoshida
,
S.
, and
Inoue
,
H.
,
2011
, “
Combustion Characteristics of a Multiple-Injection Combustor for Dry Low-NOx Combustion of Hydrogen-Rich Fuels Under Medium Pressure
,”
ASME
Paper No. GT2011-45459.10.1115/GT2011-45459
7.
Hernandez
,
S. R.
,
Wang
,
Q.
,
McDonell
,
V.
,
Mansour
,
A.
,
Steinthorsson
,
E.
,
Hollon
,
B.
, and
Hannifin
,
P.
,
2008
, “
Micro-Mixing Fuel Injectors for Low Emissions Hydrogen Combustion
,”
ASME
Paper No. GT2008-50854.10.1115/GT2008-50854
8.
Funke
,
H.
,
Beckman
,
N.
,
Keinz
,
J.
, and
Horikawa
,
A.
,
2020
, “
30 Years of Dry Low NOx Micromix Combustor Research for Hydrogen-Rich Fuels: An Overview of Past and Present Activities
,”
ASME J. Eng. Gas Turbines Power
,
6
(
1
), p.
013213
.10.1115/GT2020-16328
9.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.10.1115/1.4007733
10.
Marek
,
C.
,
Smith
,
T.
, and
Kundu
,
K.
,
2005
, “
Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection
,”
AIAA
Paper No. 2005-3776. 10.2514/6.2005-3776
11.
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Funke
,
H.
,
Keinz
,
J.
,
Striegan
,
C.
, and
Bohn
,
D.
,
2015
, “
Improvement Study for the Dry-Low-NOx Hydrogen Micromix Combustion Technology
,”
Propul. Power Res.
,
4
(
3
), pp.
132
140
.10.1016/j.jppr.2015.07.003
12.
Syred
,
N.
, and
Beér
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
13.
Choi
,
J.
,
Ahn
,
M.
,
Kwak
,
S.
,
Lee
,
J. G.
, and
Yoon
,
Y.
,
2022
, “
Flame Structure and NOx Emission Characteristics in a Single Hydrogen Combustor
,”
Int. J. Hydrogen Energy
,
47
(
68
), pp.
29542
29553
.10.1016/j.ijhydene.2022.06.247
14.
Claypole
,
T.
, and
Syred
,
N.
,
1981
, “
The Effect of Swirl Burner Aerodynamics on NOx Formation
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
81
89
.10.1016/S0082-0784(81)80013-6
15.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Flow Field Manipulation by Axial Air Injection to Achieve Flashback Resistance and Its Impact on Mixing Quality
,”
AIAA
Paper No. 2013-2603. 10.2514/6.2013-2603
16.
Capurso
,
T.
,
Laera
,
D.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2023
, “
NOx Pathways in Lean Partially Premixed Swirling H2-Air Turbulent Flame
,”
Combust. Flame
,
248
, p.
112581
.10.1016/j.combustflame.2022.112581
17.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
18.
Cheng
,
R. K.
,
Littlejohn
,
D.
,
Strakey
,
P. A.
, and
Sidwell
,
T.
,
2009
, “
Laboratory Investigations of a Low-Swirl Injector With H2 and CH4 at Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
3001
3009
.10.1016/j.proci.2008.06.141
19.
Richard
,
S.
,
Viguier
,
C.
,
Marragou
,
S.
, and
Schuller
,
T.
,
2021
, “
Dispositif D'injection de Dihydrogène et D'air
,”
Institut National de la Propriété Industrielle
,
Paris, France
, FR Patent No. FR2111267.
20.
Marragou
,
S.
,
Magnes
,
H.
,
Poinsot
,
T.
,
Selle
,
L.
, and
Schuller
,
T.
,
2022
, “
Stabilization Regimes and Pollutant Emissions From a Dual Fuel CH4/H2 and Dual Swirl Low NOx Burner
,”
Int. J. Hydrogen Energy
,
47
(
44
), pp.
19275
19288
.10.1016/j.ijhydene.2022.04.033
21.
Yuasa
,
S.
,
1986
, “
Effects of Swirl on the Stability of Jet Diffusion Flames
,”
Combust. Flame
,
66
(
2
), pp.
181
192
.10.1016/0010-2180(86)90090-8
22.
Degeneve
,
A.
,
Mirat
,
C.
,
Caudal
,
J.
,
Vicquelin
,
R.
, and
Schuller
,
T.
,
2019
, “
Effects of Swirl on the Stabilization of Non-Premixed Oxygen-Enriched Flames Above Coaxial Injectors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121018
.10.1115/1.4045024
23.
Degeneve
,
A.
,
Vicquelin
,
R.
,
Mirat
,
C.
,
Caudal
,
J.
, and
Schuller
,
T.
,
2021
, “
Impact of Co- and Counter-Swirl on Flow Recirculation and Liftoff of Non-Premixed Oxy-Flames Above Coaxial Injectors
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5501
5508
.10.1016/j.proci.2020.06.279
24.
Leroy
,
M.
,
Mirat
,
C.
,
Renaud
,
A.
, and
Vicquelin
,
R.
,
2023
, “
Stabilization of Low-NOx Hydrogen Flames on a Dual-Swirl Coaxial Injector
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021021
.10.1115/1.4055711
25.
Aniello
,
A.
,
Laera
,
D.
,
Marragou
,
S.
,
Magnes
,
H.
,
Selle
,
L.
,
Schuller
,
T.
, and
Poinsot
,
T.
,
2023
, “
Experimental and Numerical Investigation of Two Flame Stabilization Regimes Observed in a Dual Swirl H2-Air Coaxial Injector
,”
Combust. Flame
,
249
, p.
112595
.10.1016/j.combustflame.2022.112595
26.
Marragou
,
S.
,
Magnes
,
H.
,
Aniello
,
A.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Experimental Analysis and Theoretical Lift-Off Criterion for H2/Air Flames Stabilized on a Dual Swirl Injector
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4345
4354
.10.1016/j.proci.2022.07.255
27.
Brohez
,
S.
,
Delvosalle
,
C.
, and
Marlair
,
G.
,
2004
, “
A Two-Thermocouples Probe for Radiation Corrections of Measured Temperatures in Compartment Fires
,”
Fire Saf. J.
,
39
(
5
), pp.
399
411
.10.1016/j.firesaf.2004.03.002
28.
Price
,
R.
,
Hurle
,
I.
, and
Sugden
,
T.
,
1969
, “
Optical Studies of the Generation of Noise in Turbulent Flames
,”
Symp. (Int.) Combust.
,
12
, pp.
1093
1102
.10.1016/S0082-0784(69)80487-X
29.
Schefer
,
R. W.
,
Kulatilaka
,
W. D.
,
Patterson
,
B. D.
, and
Settersten
,
T. B.
,
2009
, “
Visible Emission of Hydrogen Flames
,”
Combust. Flame
,
156
(
6
), pp.
1234
1241
.10.1016/j.combustflame.2009.01.011
30.
Muñiz
,
L.
, and
Mungal
,
M. G.
,
1997
, “
Instantaneous Flame-Stabilization Velocities in Lifted-Jet Diffusion Flames
,”
Combust. Flame
,
111
(
1–2
), pp.
16
31
.10.1016/S0010-2180(97)00096-5
31.
Joedicke
,
A.
,
Peters
,
N.
, and
Mansour
,
M.
,
2005
, “
The Stabilization Mechanism and Structure of Turbulent Hydrocarbon Lifted Flames
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
901
909
.10.1016/j.proci.2004.08.031
32.
Steele
,
R. C.
,
Malte
,
P. C.
,
Nicol
,
D. G.
, and
Kramlich
,
J. C.
,
1995
, “
NOx and N2O in Lean-Premixed Jet-Stirred Flames
,”
Combust. Flame
,
100
(
3
), pp.
440
449
.10.1016/0010-2180(94)00070-9
33.
Lee
,
S.-R.
,
Park
,
S.-S.
, and
Chung
,
S.-H.
,
1995
, “
Flame Structure and Thermal NOx Formation in Hydrogen Diffusion Flames With Reduced Kinetic Mechanisms
,”
KSME J.
,
9
(
3
), pp.
377
384
.10.1007/BF02953636
34.
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2006
, “
A Wide Range Modeling Study of NOx Formation and Nitrogen Chemistry in Hydrogen Combustion
,”
Int. J. Hydrogen Energy
,
31
(
15
), pp.
2310
2328
.10.1016/j.ijhydene.2006.02.014
35.
Tuncer
,
O.
,
Acharya
,
S.
, and
Uhm
,
J. H.
,
2009
, “
Dynamics, NOx and Flashback Characteristics of Confined Premixed Hydrogen-Enriched Methane Flames
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
496
506
.10.1016/j.ijhydene.2008.09.075
36.
Oh
,
J.
,
Hwang
,
J.
, and
Yoon
,
Y.
,
2010
, “
EINOx Scaling in a Non-Premixed Turbulent Hydrogen Jet With Swirled Coaxial Air
,”
Int. J. Hydrogen Energy
,
35
(
16
), pp.
8715
8722
.10.1016/j.ijhydene.2010.04.159
37.
Hwang
,
J.
,
Sohn
,
K.
,
Bouvet
,
N.
, and
Yoon
,
Y.
,
2013
, “
NOx Scaling of Syngas H2/CO Turbulent Non-Premixed Jet Flames
,”
Combust. Sci. Technol.
,
185
(
12
), pp.
1715
1734
.10.1080/00102202.2013.831847
38.
Brunetti
,
I.
,
Riccio
,
G.
,
Rossi
,
N.
,
Cappelletti
,
A.
,
Bonelli
,
L.
,
Marini
,
A.
,
Paganini
,
E.
, and
Martelli
,
F.
,
2011
, “
Experimental and Numerical Characterization of Lean Hydrogen Combustion in a Premix Burner Prototype
,”
ASME
Paper No. GT2011-45623. 10.1115/GT2011-45623
You do not currently have access to this content.