Abstract

As the energy landscape transitions to low/zero-carbon fuels, gas turbine manufacturers are targeting fuel flexible operation with natural gas, syngas, and hydrogen-enriched mixtures. Having a single geometry that can support the different fuel blends requested by clients can accelerate the transition to cleaner energy generation and mitigate the environmental impact of gas turbines. Toward this goal, micromix combustion technology has received significant interest, and when coupled with additive manufacturing, novel injector geometries with unique configurations may be capable of stabilizing premixed, partially-premixed, and diffusion flames using fuel mixtures ranging from pure methane to pure hydrogen. In this work, a preliminary investigation of this micromix concept is performed in the Atmospheric Combustion Rig at the National Research Council (NRC) Canada. Flame stability maps are obtained for fuel lean mixtures of H2/CH4 ranging from 0/100, 70/30, 90/10, to 100/0%, by volume. Multiple flame shapes are observed depending on the fuel mixture and combustion mode selected. Particle image velocimetry (PIV), OH, and acetone planar laser-induced fluorescence (PLIF), and acoustic measurements provide additional insights into the combustion process of these novel burners to better understand the stability mechanisms. The quality of the fuel–air mixing from the premixed and micromix injectors is assessed using acetone as a tracer for the fuel, while simultaneous OH-PLIF measurements provide an indication of the postflame regions in the flow. Acoustic measurements complete the current dataset and provide combustion dynamics maps measuring the normalized pressure amplitudes and identifying the dominant frequencies. The preliminary characterization of this additive manufacturing (AM) micromix nozzle shows promising fuel flexibility with wide stability margins and low combustion dynamics for this single nozzle burner.

References

1.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Horikawa
,
A.
,
2021
, “
30 Years of Dry-Low-NOx Micromix Combustor Research for Hydrogen-Rich Fuels-An Overview of Past and Present Activities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071002
.10.1115/1.4049764
2.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
3.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
4.
Funke
,
H. H.-W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
An Overview on Dry Low NOx Micromix Combustor Development for Hydrogen-Rich Gas Turbine Applications
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6978
6990
.10.1016/j.ijhydene.2019.01.161
5.
Kroniger
,
D.
,
Horikawa
,
A.
,
Funke
,
H. H.-W.
,
Pfaeffle
,
F.
,
Kishimoto
,
T.
, and
Okada
,
K.
,
2021
, “
Experimental and Numerical Investigation on the Effect of Pressure on Micromix Hydrogen Combustion
,”
ASME
Paper No. GT2021-58926. 10.1115/GT2021-58926
6.
Kroniger
,
D.
,
Horikawa
,
A.
,
Okada
,
K.
, and
Ashida
,
Y.
,
2022
, “
Novel Fuel Injector Geometry for Enhancing the Fuel Flexibility of a Dry Low NOx MicroMix Flame
,”
ASME
Paper No. GT2022-83025. 10.1115/GT2022-83025
7.
Cho
,
E.-S.
,
Jeong
,
H.
,
Hwang
,
J.
, and
Kim
,
M.
,
2022
, “
A Novel 100% Hydrogen Gas Turbine Combustor Development for Industrial Use
,”
ASME
Paper No. GT2022-80619. 10.1115/GT2022-80619
8.
An
,
Q.
,
Kheirkhah
,
S.
,
Bergthorson
,
J.
,
Yun
,
S.
,
Hwang
,
J.
,
Lee
,
W. J.
,
Kim
,
M. K.
,
Cho
,
J. H.
,
Kim
,
H. S.
, and
Vena
,
P.
,
2021
, “
Flame Stabilization Mechanisms and Shape Transitions in a 3D Printed, Hydrogen Enriched, Methane/Air Low-Swirl Burner
,”
Int. J. Hydrogen Energy
,
46
(
27
), pp.
14764
14779
.10.1016/j.ijhydene.2021.01.112
9.
Giuliani
,
F.
,
Paulitsch
,
N.
,
Cozzi
,
D.
,
Görtler
,
M.
, and
Andracher
,
L.
,
2018
, “
An Assessment on the Benefits of Additive Manufacturing Regarding New Swirler Geometries for Gas Turbine Burners
,”
ASME
Paper No. GT2018-75165. 10.1115/GT2018-75165
10.
Moosbrugger
,
V.
,
Giuliani
,
F.
,
Paulitsch
,
N.
, and
Andracher
,
L.
,
2019
, “
Progress in Burner Design Using Additive Manufacturing With a Monolithic Approach and Added Features
,”
ASME
Paper No. GT2019-90720. 10.1115/GT2019-90720
11.
Rajasegar
,
R.
,
Mitsingas
,
C. M.
,
Mayhew
,
E. K.
,
Liu
,
Q.
,
Lee
,
T.
, and
Yoo
,
J.
,
2018
, “
Development and Characterization of Additive-Manufactured Mesoscale Combustor Array
,”
J. Energy Eng.
,
144
(
3
), p.
04018013
.10.1061/(ASCE)EY.1943-7897.0000527
12.
Bridgeland
,
R.
,
Chapman
,
A.
,
McLellan
,
B.
,
Sofronis
,
P.
, and
Fujii
,
Y.
,
2022
, “
Challenges Toward Achieving a Successful Hydrogen Economy in the US: Potential End-Use and Infrastructure Analysis to the Year 2100
,”
Cleaner Prod. Lett.
,
3
, p.
100012
.10.1016/j.clpl.2022.100012
13.
Fan
,
L.
,
Savard
,
B.
,
Carlyle
,
S.
,
Nozari
,
M.
,
Naaman
,
R.
,
Fond
,
B.
, and
Vena
,
P.
,
2023
, “
Simultaneous stereo-PIV and OH×CH2O PLIF Measurements in Turbulent Ultra Lean CH4/H2 Swirling Wall-Impinging Flames
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
2179
2188
.10.1016/j.proci.2022.09.039
14.
Lam
,
K.-K.
,
Geipel
,
P.
, and
Larfeldt
,
J.
,
2015
, “
Hydrogen Enriched Combustion Testing of Siemens Industrial SGT-400 at Atmospheric Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021502
.10.1115/1.4028209
15.
Schulz
,
C.
, and
Sick
,
V.
,
2005
, “
Tracer-LIF Diagnostics: Quantitative Measurement of Fuel Concentration, Temperature and Fuel/Air Ratio in Practical Combustion Systems
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
75
121
.10.1016/j.pecs.2004.08.002
16.
Salazar
,
V. M.
,
Kaiser
,
S. A.
, and
Halter
,
F.
,
2009
, “
Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel
,”
SAE Int. J. Fuels Lubr.
,
2
(
1
), pp.
737
761
.10.4271/2009-01-1534
17.
Tuncer
,
O.
,
Acharya
,
S.
, and
Uhm
,
J.
,
2009
, “
Dynamics, NOx and Flashback Characteristics of Confined Premixed Hydrogen-Enriched Methane Flames
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
496
506
.10.1016/j.ijhydene.2008.09.075
18.
Syred
,
N.
,
Abdulsada
,
M.
,
Griffiths
,
A.
,
O'Doherty
,
T.
, and
Bowen
,
P.
,
2012
, “
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
,”
Appl. Energy
,
89
(
1
), pp.
106
110
.10.1016/j.apenergy.2011.01.057
19.
Schefer
,
R. W.
,
Kulatilaka
,
W. D.
,
Patterson
,
B. D.
, and
Settersten
,
T. B.
,
2009
, “
Visible Emission of Hydrogen Flames
,”
Combust. Flame
,
156
(
6
), pp.
1234
1241
.10.1016/j.combustflame.2009.01.011
You do not currently have access to this content.