Abstract

Multi-injector burner systems offer a high spatial-temporal mixture homogeneity due to their small size and thus have a high NOx emission reduction potential at increasing flame temperatures. This potential is reduced due to the sensitivity of the mixing quality to inflow distortions caused by the flow path in the burner head. A deep understanding of the link between the inflow conditions and the mixture quality helps to optimize the flow field upstream of the injectors within the spatial and pressure loss constraints of gas turbine combustors to obtain minimal NOx emissions. This paper presents a new model approach for determining the mixture quality in multi-injector burners with output-based proper orthogonal decomposition (O-POD). The sensitivity to the inflow distortion is considered with the so-called observable vector, which describes the injector inflow conditions and is given as model input. The target quantity is the probability mass function (PMF) of the equivalence ratio at the injector outlet. This model allows a fast estimation of the mixing PMF for arbitrary inflow conditions, which is otherwise only accessible with complex time-resolved experimental or numerical approaches. The performance of the model was demonstrated with 21 reference datasets, for which a good agreement between the experimental results and the model output was obtained.

References

1.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2008
, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011505
.10.1115/1.2749280
2.
Schütz
,
H.
,
Lammel
,
O.
,
Schmitz
,
G.
,
Rödiger
,
T.
, and
Aigner
,
M.
,
2012
, “
EZEE®: a High Power Density Modulating FLOX® Combustor
,”
ASME
Paper No. GT2012-68997.10.1115/GT2012-68997
3.
Roediger
,
T.
,
Lammel
,
O.
,
Aigner
,
M.
,
Beck
,
C.
, and
Krebs
,
W.
,
2013
, “
Part-Load Operation of a Piloted FLOX® Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031503
.10.1115/1.4007754
4.
Gruschka
,
U.
,
Janus
,
B.
,
Meisl
,
J.
,
Huth
,
M.
, and
Wasif
,
S.
,
2008
, “
ULN System for the New SGT5-8000H Gas Turbine: Design and High Pressure Test Rig Results
,”
ASME
Paper No. GT2008-51208.10.1115/GT2008-51208
5.
Marquez Macias
,
F.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Huth
,
M.
, and
Meisl
,
J.
,
2022
, “
Investigating the Mixture Quality in Multi-Injector Burner Systems–Part I: Experimental Setup
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121008
.10.1115/1.4055491
6.
Sangl
,
J.
,
2011
, “
Increase of the Fuel Flexibility of Premixed Burners by Influencing the Vortex Dymamics
,” Dissertation,
Technische Universität München
,
München, Germany
.
7.
Utschick
,
M.
,
2016
, “
Security Criteria for the Premixed Combustion of Hydrogen-Containing Fuels in Gas Turbines
,” Dissertation,
Technische Universität München
,
München, Germany
.
8.
Löw
,
E.-M.
,
2016
, “
Analysis of Combution Processes in self-Ignition Dominated Regime by Means of Mixture Statistics
,” Dissertation,
Technische Universität München
,
München, Germany
.
9.
Dederichs
,
S.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Beck
,
C.
,
Krebs
,
W.
, and
Prade
,
B.
,
2013
, “
Assessment of a Gas Turbine NOx Reduction Potential Based on a Spatiotemporal Unmixedness Parameter
,”
ASME J. Eng. Gas Turbines Power
, 135(11), p. 111504.10.1115/1.4025078
10.
Christ
,
P.
,
2018
, “
Modeling of Automotive HVAC Units Using Proper Orthogonal Decomposition
,”
Dissertation
,
Technische Universität München
,
München, Germany
.https://mediatum.ub.tum.de/doc/1464400/1464400.pdf
11.
Christ
,
P.
, and
Sattelmayer
,
T.
,
2018
, “
Thermal Modeling of an Automotive HVAC Unit Using a Coupled POD and Flow Resistance Network Approach
,”
SAE
Paper No. 2018-01-0068.10.4271/2018-01-0068
12.
Christ
,
P.
, and
Sattelmayer
,
T.
,
2018
, “
Reduced Order Modelling of Flow and Mixing in an Automobile HVAC System Using Proper Orthogonal Decomposition
,”
Appl. Therm. Eng.
,
133
, pp.
211
223
.10.1016/j.applthermaleng.2018.01.023
13.
N
,
A. G.
,
1963
,
The Theory of Turbulent Jets
,
MIT Press
,
Cambridge, MA
.
14.
Astrid
,
P.
,
2004
, “
Reduction of Process Simulation Models: A Proper Orthogonal Decomposition Approach
,”
Ph.D. thesis
,
Electrical Engineering, Eindhoven University of Technology
,
Eindhoven, The Netherlands
.https://pure.tue.nl/ws/portalfiles/portal/1936139/200413220.pdf
15.
Astrid
,
P.
,
Weiland
,
S.
,
Willcox
,
K.
, and
Backx
,
T.
,
2008
, “
Missing Point Estimation in Models Described by Proper Orthogonal Decomposition
,”
IEEE Trans. Autom. Control
,
53
(
10
), pp.
2237
2251
.10.1109/TAC.2008.2006102
16.
Kamotani
,
Y.
, and
Greber
,
I.
,
1972
, “
Experiments on a Turbulent Jet in a Cross Flow
,”
AIAA J.
,
10
(
11
), pp.
1425
1429
.10.2514/3.50386
17.
Broadwell
,
J.
, and
Breidenthal
,
R.
,
1984
, “
Structure and Mixing of a Transverse Jet in Incompressible Flow
,”
J. Fluid Mech.
,
148
, pp.
405
412
.10.1017/S0022112084002408
18.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
2001
, “
Transverse Jets and Jet Flames. Part 1. Scaling Laws for Strong Transverse Jets
,”
J. Fluid Mech.
,
443
, pp.
1
25
.10.1017/S0022112001005146
19.
Kuzo
,
D.
,
1996
, “
An Experimental Study of the Turbulent Transverse Jet
,”
Dissertation
,
California Institute of Technology
,
Pasadena, CA
.10.7907/xa4v-qb95
20.
Holmes
,
P.
,
Lumley
,
J. L.
,
Berkooz
,
G.
, and
Rowley
,
C. W.
,
2012
, “
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,”
Cambridge Monographs on Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Coleman
,
T. F.
, and
Yuying
,
L.
,
1994
, “
On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds
,”
Math. Program.
,
67
(
1–3
), pp.
189
224
.10.1007/BF01582221
22.
Coleman
,
T. F.
, and
Li
,
Y.
,
1996
, “
An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
,
6
(
2
), pp.
418
445
.10.1137/0806023
23.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
24.
The OpenFOAM Foundation,
2003
, “OpenFOAM User Guide,”
OpenFOAM Foundation Ltd
.,
London, UK
, accessed Dec. 3, 2022, https://openfoam.org/
25.
Juretic
,
F.
,
2015
,
cfMesh User Guide
,
Creative Fields Ltd
.,
London, UK
.
26.
Polifke
,
W.
,
Bruno
,
D.
,
Bomberg
,
S.
,
Cardenas
,
A.
,
Carneiro
,
J.
,
Collonval
,
F.
,
Dems
,
P.
, et al.,
2000
,
Hand Out of the Praktikum: Simulation of Thermo-Fluids With Open Source Tools
,
Technische Universität München
,
München, Germany
.
27.
Alfonsi
,
G.
,
2009
, “
Reynolds-Averaged Navier-Stokes Equations for Turbulence Modeling
,”
ASME Appl. Mech. Rev.
,
62
(
4
), p. 040802.10.1115/1.3124648
28.
Langer
,
S.
, and
Swanson
,
R. C.
,
2020
, “
On Boundary-Value Problems for RANS Equations and Two-Equation Turbulence Models
,”
J. Sci. Comput.
,
85
(
1
), Article No. 20.https://link.springer.com/article/10.1007/s10915-020-01323-9
29.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.10.1007/s10915-020-01323-9
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applicacions
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.