Abstract

The concept of electrified aircraft propulsion (EAP) has garnered substantial attention and investigation due to its potential for mitigating fuel consumption, emissions, and noise. Present studies mainly concentrate on point design rather than systematic design space exploration. This paper considers the attainment of prescribed mission objectives as a paramount evaluation criterion and proposed a mission-oriented design and verification method based on model-based systems engineering (MBSE). Instead of using a general modeling language, this method develops a domain-specific metamodel library for EAP based on six meta-metamodels. A Mission-Operational-Functional-Logical-Physical (MOFLP) modeling methodology is provided to standardize EAP design process. Furthermore, the modeling process is integrated with the verification process by executable verification script. A case study about skydiving mission is conducted to verify the effectiveness of this method. The case results corroborate the utility of this method in the generation of an initial EAP solution. Such initial solution can serve as a fundamental benchmark for iterative design.

References

1.
Felder
,
J. L.
,
Brown
,
G. V.
,
DaeKim
,
H.
, and
Chu
,
J.
,
2011
, “
Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft
,”
20th ISABE Conference
, ISABE-2011-1340, Gothenburg, Sweden, Sept. 12–16.https://ntrs.nasa.gov/citations/20120000856
2.
Langford
,
J. S.
, and
Hall
,
D. K.
,
2020
, “
Electrified Aircraft Propulsion
,”
Bridge
,
50
(
2
), pp.
21
27
.https://www.nae.edu/234444/Electrified-Aircraft-Propulsion
3.
Jansen
,
R.
,
Bowman
,
C.
,
Jankovsky
,
A.
,
Dyson
,
R.
, and
Felder
,
J.
,
2017
, “
Overview of NASA Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports
,”
AIAA
Paper No. 2017-4701. 10.2514/6.2017-4701
4.
Kim
,
H. D.
,
Perry
,
A. T.
, and
Ansell
,
P. J.
,
2018
, “
A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology
,”
AIAA
Paper No. 2018-4998. 10.2514/6.2018-4998
5.
Hepperle
,
M.
,
2012
, “
Electric Flight-Potential and Limitations
,”
Energy Efficient Technologies and Concepts of Operation
,
Lisbon, Portugal
, Oct. 22–24, pp.
1
9
.https://www.researchgate.net/publication/234738753_Electric_Flight_-_Potential_and_Limitations
6.
Bærheim
,
T.
,
Lamb
,
J. J.
,
Nøland
,
J. K.
, and
Burheim
,
O. S.
,
2023
, “
Potential and Limitations of Battery-Powered All-Electric Regional Flights—A Norwegian Case Study
,”
IEEE Trans. Transp. Electrif.
,
9
(
1
), pp.
1809
1825
.10.1109/TTE.2022.3200089
7.
Pornet
,
C.
, and
Isikveren
,
A. T.
,
2015
, “
Conceptual Design of Hybrid-Electric Transport Aircraft
,”
Prog. Aerosp. Sci.
,
79
, pp.
114
135
.10.1016/j.paerosci.2015.09.002
8.
Marien
,
T.
,
Blaesser
,
N. J.
,
Frederick
,
Z. J.
,
Guynn
,
M. D.
,
Kirk
,
J.
,
FIsher
,
K.
,
Schneider
,
S.
,
Thacker
,
R. P.
, and
Frederic
,
P.
,
2021
, “
Methodology Used for an Electrified Aircraft Propulsion Design Exploration
,”
AIAA
Paper No. 2021-3191. 10.2514/6.2021-3191
9.
Zhou
,
T.
,
Enalou
,
H. B.
,
Pontika
,
E.
,
Zaghari
,
B.
, and
Laskaridis
,
P.
,
2022
, “
Minimising the Effect of Degradation of Fuel Cell Stacks on an Integrated Propulsion Architecture for an Electrified Aircraft
,” Proceeding of IEEE Transportation Electrification Conference & Expo (
ITEC
),
Anaheim, CA
, June 15–17, pp.
1064
1069
.10.1109/ITEC53557.2022.9813899
10.
Kazula
,
S.
,
de Graaf
,
S.
, and
Enghardt
,
L.
,
2022
, “
Preliminary Safety Assessment of PEM Fuel Cell Systems for Electrified Propulsion Systems in Commercial Aviation
,”
Proceedings of the 32nd European Safety and Reliability Conference
,
Dublin, Irland
, Sept. 1–Aug. 28, pp.
2613
2620
.10.3850/978-981-18-5183-4_S16-02-019
11.
Barrera
,
T. P.
,
Bond
,
J. R.
,
Bradley
,
M.
,
Gitzendanner
,
R.
,
Darcy
,
E. C.
,
Armstrong
,
M.
, and
Wang
,
C.-Y.
,
2022
, “
Next-Generation Aviation Li-Ion Battery Technologies—Enabling Electrified Aircraft
,”
Electrochem. Soc. Interface
,
31
(
3
), pp.
69
74
.10.1149/2.F10223IF
12.
Scheidler
,
J. J.
,
Asnani
,
V. M.
, and
Tallerico
,
T. F.
,
2018
, “
NASA's Magnetic Gearing Research for Electrified Aircraft Propulsion
,”
AIAA
Paper No. 2018-4988. 10.2514/6.2018-4988
13.
Scheidler
,
J.
, and
Tallerico
,
T.
,
2023
, “
Methodology for Electromagnetic Optimization of a Partially Superconducting 1.4 MW Electric Machine for Electrified Aircraft Propulsion
,”
IEEE Trans. Appl. Supercond.
,
33
(
5
), pp.
1
5
.10.1109/TASC.2023.3265575
14.
Kiran
,
A.
,
Zaghari
,
B.
,
Sinnige
,
T.
,
Pontika
,
E.
,
Enalou
,
H. B.
,
Kipouros
,
T.
, and
Laskaridis
,
P.
,
2023
, “
The Impact of Electric Machine and Propeller Coupling Design on Electrified Aircraft Noise and Performance
,”
AIAA
Paper No. 2023–2133.10.2514/6.2023-2133
15.
Sirimanna
,
S.
,
Thanatheepan
,
B.
,
Lee
,
D.
,
Agrawal
,
S.
,
Yu
,
Y.
,
Wang
,
Y.
,
Anderson
,
A.
,
Banerjee
,
A.
, and
Haran
,
K.
,
2021
, “
Comparison of Electrified Aircraft Propulsion Drive Systems With Different Electric Motor Topologies
,”
J. Propul. Power
,
37
(
5
), pp.
733
747
.10.2514/1.B38195
16.
Chapman
,
J. W.
,
Hasseeb
,
H.
, and
Schnulo
,
S.
,
2020
, “
Thermal Management System Design for Electrified Aircraft Propulsion Concepts
,”
AIAA
Paper No. 2020-3571. 10.2514/6.2020-3571
17.
Simon
,
D. L.
,
Connolly
,
J. W.
, and
Culley
,
D. E.
,
2020
, “
Control Technology Needs for Electrified Aircraft Propulsion Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011025
.10.1115/1.4044969
18.
Lizcano
,
M.
,
Williams
,
T. S.
,
Shin
,
E.-S. E.
,
Santiago
,
D.
, and
Nguyen
,
B.
,
2022
, “
Aerospace Environmental Challenges for Electrical Insulation and Recent Developments for Electrified Aircraft
,”
Materials
,
15
(
22
), p.
8121
.10.3390/ma15228121
19.
Kruger
,
M.
,
Byahut
,
S.
,
Uranga
,
A.
,
Gonzalez
,
J.
,
Hall
,
D. K.
, and
Dowdle
,
A.
,
2018
, “
Electrified Aircraft Trade-Space Exploration
,”
Proceedings of Aviation Technology, Integration, and Operations Conference
, Atlanta, GA, June 25–29, p.
4227
.https://viterbik12.usc.edu/wpcontent/uploads/2019/06/Uranga_Electrified-Aircraft.pdf
20.
Kirk
,
J.
,
Frederick
,
Z. J.
,
Guynn
,
M. D.
,
Blaesser
,
N. J.
,
Phillips
,
B. D.
,
Fisher
,
K.
,
Schneider
,
S. J.
, and
Frederic
,
P.
,
2023
, “
Continued Exploration of the Electrified Aircraft Propulsion Design Space
,”
AIAA
Paper No. 2023-1354. 10.2514/6.2023-1354
21.
Checkland
,
P.
,
1999
, “
Systems Thinking
,”
Rethinking Management Information Systems
, Wiley, Chichester, UK, pp.
45
56
.
22.
Henderson
,
K.
, and
Salado
,
A.
,
2021
, “
Value and Benefits of Model‐Based Systems Engineering (MBSE): Evidence From the Literature
,”
Syst. Eng.
,
24
(
1
), pp.
51
66
.10.1002/sys.21566
23.
Friedenthal
,
S.
,
Griego
,
R.
, and
Sampson
,
M.
,
2007
, “
INCOSE Model Based Systems Engineering (MBSE) Initiative
,”
Proceedings of INCOSE 2007 Symposium
, San Diego, CA, June 24–29, pp.
1
29
.https://www.researchgate.net/publication/267687693_INCOSE_Model_Based_Systems_Engineering_MBSE_Initiative
24.
Walden
,
D. D.
,
Roedler
,
G. J.
, and
Forsberg
,
K.
,
2015
, “
INCOSE Systems Engineering Handbook Version 4: Updating the Reference for Practitioners
,”
Proc. INCOSE Int. Symp., Wiley Online Libr.
,
25
(
1
), pp.
678
686
.10.1002/j.2334-5837.2015.00089.x
25.
Estefan
,
J. A.
,
2007
, “
Survey of Model-Based Systems Engineering (MBSE) Methodologies
,”
Incose MBSE Focus Group
,
25
(
8
), pp.
1
12
.http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
26.
Kiran
,
A.
,
Zaghari
,
B.
,
Kipouros
,
T.
, and
Dos Reis
,
R. J. N.
,
2023
, “
Application of Model-Based Systems Engineering for the Integration of Electric Engines in Electrified Aircraft
,”
Proc. J. Phys.: Conf. Ser.
,
2526
(
2023
), p.
012025
.10.1088/1742-6596/2526/1/012025
27.
Fields
,
T. M.
,
Glinski
,
S.
,
Harrison
,
E.
,
Bendarkar
,
M. V.
,
Garcia
,
E.
, and
Mavris
,
D. N.
,
2023
, “
Applications of an MBSE Regulatory Framework to Electrified Aircraft
,”
AIAA
Paper No. 2023-3993. 10.2514/6.2023-3993
28.
Chen
,
J.
,
Chen
,
Y.
,
Hu
,
Z.
,
Lu
,
J.
,
Zheng
,
X.
,
Zhang
,
H.
, and
Kiritsis
,
D.
,
2022
, “
A Semantic Ontology-Based Approach to Support Model-Based Systems Engineering Design for an Aircraft Prognostic Health Management System
,”
Front. Manuf. Technol.
,
2
, p.
886518
.10.3389/fmtec.2022.886518
29.
D'Ambrosio
,
J.
,
Adiththan
,
A.
,
Ordoukhanian
,
E.
,
Peranandam
,
P.
,
Ramesh
,
S.
,
Madni
,
A. M.
, and
Sundaram
,
P.
,
2019
, “
An MBSE Approach for Development of Resilient Automated Automotive Systems
,”
Systems
,
7
(
1
), p.
1
.10.3390/systems7010001
30.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2014
,
A Practical Guide to SysML: The Systems Modeling Language
,
Morgan Kaufmann
, Burlington, NJ.
31.
Lu
,
J.
,
Wang
,
G.
,
Ma
,
J.
,
Kiritsis
,
D.
,
Zhang
,
H.
, and
Törngren
,
M.
,
2020
, “
General Modeling Language to Support Model‐Based Systems Engineering Formalisms (Part 1)
,”
Proc. INCOSE Int. Symp., Wiley Online Libr.
,
30
(
1
), pp.
323
338
.10.1002/j.2334-5837.2020.00725.x
32.
Guo
,
J.
,
Wang
,
G.
,
Lu
,
J.
,
Ma
,
J.
, and
Törngren
,
M.
,
2020
, , “
General Modeling Language Supporting Model Transformations of Mbse (Part 2)
,”
Proc. INCOSE Int. Symp., Wiley Online Libr.
,
30
(
1
), pp.
1460
1473
.10.1002/j.2334-5837.2020.00797.x
33.
Ding
,
J.
,
Reniers
,
M.
,
Lu
,
J.
,
Wang
,
G.
,
Feng
,
L.
, and
Kiritsis
,
D.
,
2021
, “
Integration of Modeling and Verification for System Model Based on KARMA Language
,”
Proceedings of the 18th ACM SIGPLAN International Workshop on Domain-Specific Modeling
, Chicago, IL, Oct. 18, pp.
41
50
.10.1145/3486603.3486775
34.
Kelly
,
S.
, and
Tolvanen
,
J.-P.
,
2008
,
Domain-Specific Modeling: Enabling Full Code Generation
,
Wiley
, Hoboken, NJ.
35.
Favre
,
L.
, and
Duarte
,
D.
, 2016,
“Formal MOF Metamodeling and Tool Support,” Proc. 2016 4th International Conference on Model-Driven Engineering and Software Development (
MODELSWARD
),
Rome, Italy
, Feb. 19–21, pp. 99–110.https://ieeexplore.ieee.org/document/7954349
36.
Lu
,
J.
,
Ma
,
J.
,
Zheng
,
X.
,
Wang
,
G.
,
Li
,
H.
, and
Kiritsis
,
D.
,
2022
, “
Design Ontology Supporting Model-Based Systems Engineering Formalisms
,”
IEEE Syst. J.
,
16
(
4
), pp.
5465
5476
.10.1109/JSYST.2021.3106195
37.
Glassock
,
R.
,
Galea
,
M.
,
Williams
,
W.
, and
Glesk
,
T.
,
2017
, “
Hybrid Electric Aircraft Propulsion Case Study for Skydiving Mission
,”
Aerospace
,
4
(
3
), p.
45
.10.3390/aerospace4030045
38.
Swaminathan
,
R.
,
Sarojini
,
D.
, and
Hwang
,
J. T.
,
2023
, “
Integrating MBSE and MDO Through an Extended Requirements-Functional-Logical-Physical (RFLP) Framework
,”
AIAA
Paper No. 2023-3908. 10.2514/6.2023-3908
39.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2010
,
Product Design for Manufacture and Assembly
,
CRC Press
, Boca Raton, FL.
40.
Chen
,
J.
,
Lu
,
J.
,
Wang
,
G.
,
Feng
,
L.
, and
Kiritsis
,
D.
,
2022
, “
A Semantics Modeling Approach Supporting Property Verification Based on Satisfiability Modulo Theories
,” Proceedings of 2022 IEEE International Systems Conference (
SysCon
),
Montreal, QC, Canada
, Apr. 25–28, pp.
1
8
.10.1109/SysCon53536.2022.9773841
41.
Chen
,
J.
,
Wang
,
G.
,
Lu
,
J.
,
Zheng
,
X.
, and
Kiritsis
,
D.
,
2022
, “
Model-Based System Engineering Supporting Production Scheduling Based on Satisfiability Modulo Theory
,”
J. Ind. Inf. Integr.
,
27
(
100329
), p.
100329
.10.1016/j.jii.2022.100329
42.
Barrett
,
C.
, and
Tinelli
,
C.
,
2018
,
Satisfiability Modulo Theories
,
Springer
, Amsterdam, The Netherlands.
43.
Jensen
,
K.
, and
Podelski
,
A.
,
2006
, “
Tools and Algorithms for the Construction and Analysis of Systems
,”
Int. J. Software Tools Technol. Transfer
,
8
(
3
), pp.
177
179
.10.1007/s10009-006-0221-5
You do not currently have access to this content.